Inhaltsverzeichnis

Editorial ... 4
Vorwort .. 6
Fakultät und Studiengänge ... 7
Bericht der Fakultät .. 7
Studierendenzahlen .. 7
Bericht der Studiengänge .. 9
 Studiengang Bachelor Elektro- und Informationstechnik .. 9
 Studiengang Bachelor Kunststofftechnik ... 10
 Studiengang Bachelor Maschinenbau ... 12
 Studiengang Bachelor Mechatronik .. 15
 Studiengang Master angewandte Forschung und Entwicklung 16
 Studiengang Master Ingenieurwissenschaften ... 18
Personal .. 20
 Professoren Neubesetzungen ... 20
 Prof. Dr. Fabian Riß .. 20
 Prof. Dr. Frank King .. 20
 Prof. Dr. Matthias Winter .. 21
 Prof. Dr. Benedikt Dietrich .. 21
 Professoren Ruhestand ... 23
 Prof. Dr. Wolfgang Schittenhelm ... 23
Mitarbeiter Neubesetzungen ... 25
Mitarbeiter Ruhestand & Ausscheiden aus der Fakultät ... 25
Organisation & Gremien .. 27
 Fakultätsrat .. 27
 Senatsvertreter ... 27
 Fachschaft ING ... 28
Einrichtungen & Labore .. 29
 Labor für Bewegungsführung und Systemdynamik ... 29
 Labor für elektromagnetische Verträglichkeit (EMV) .. 31
 Labor für Grundlagen der Elektrotechnik I .. 33
 Labor für industrielle Leit- und Automatisierungstechnik 35
 Labor für Kommunikationssysteme .. 37
 Labor für Leistungselektronik ... 39
 Labor für Messtechnik .. 41
 Labor für Mixed Signal Systeme ... 43
 Labor für Montageautomatisierung und Robotik ... 47
 Labor für Regelungstechnik .. 51
 Labor für Spritzgießtechnik und Leichtbau ... 53
 Technikum Extrusion und Polymerchemie .. 55
Projekte / F&E-Aktivitäten .. 59
 Arbeitsgruppe F&E Kunststofftechnik ... 59
 Projekt EAGLE – Electric Auxiliary Propulsion for a Glider 61
 Optische Spaltmessanlage für Verdichterschrauben ... 65
 ASIC für Stromregler von Servoantrieben .. 66
 Kamerabasierte Lokalisierung von Bauteilen ... 67
Veranstaltungen ... 69
 MiNT Tag (2019) ... 69
 Erstes Rosenheimer Symposium für Additive Fertigung (2019) 69
 Absolventenfeier (2019) .. 70
 50 Jahre Kunststofftechnik (2019) .. 71
 25 Jahre EIT (2020) .. 72
Sonstiges.. 73
 Dr. Paul Leather zum Honorarprofessor ernannt ... 74
Abschlussarbeiten ... 75
 Elektro- und Informationstechnik ... 75
 Kunststofftechnik ... 77
 Maschinenbau ... 79
 Mechatronik ... 83
 AFE... 85
 ING-M .. 87
Veröffentlichungen ... 91
Das Jahr 2020 brachte unter anderem eine Neuerung an der Fakultät mit sich, die ein Ingenieursstudium an der TH Rosenheim noch attraktiver macht: Mit dem „Flexi-Startsemester“ haben Studierende mehr Zeit, das für sie passende Studium zu finden. Sie können sich auch erst mit Abschluss des ersten Semesters endgültig auf einen der Studiengänge Elektro- und Informationstechnik, Maschinenbau, Kunststofftechnik oder Mechatronik festlegen. Diese Flexibilität bietet nur die TH Rosenheim!

Mehr zu diesen und weiteren interessanten Themen der Fakultät für Ingenieurwissenschaften lesen Sie auf den folgenden Seiten. Ich wünsche Ihnen viel Spaß bei der Lektüre.

Herzliche Grüße

Prof. Heinrich Köster
Präsident der TH Rosenheim

Liebe Leserinnen und Leser,

Das Jahr 2020 brachte unter anderem eine Neuerung an der Fakultät mit sich, die ein Ingenieursstudium an der TH Rosenheim noch attraktiver macht: Mit dem „Flexi-Startsemester“ haben Studierende mehr Zeit, das für sie passende Studium zu finden. Sie können sich auch erst mit Abschluss des ersten Semesters endgültig auf einen der Studiengänge Elektro- und Informationstechnik, Maschinenbau, Kunststofftechnik oder Mechatronik festlegen. Diese Flexibilität bietet nur die TH Rosenheim!

Mehr zu diesen und weiteren interessanten Themen der Fakultät für Ingenieurwissenschaften lesen Sie auf den folgenden Seiten. Ich wünsche Ihnen viel Spaß bei der Lektüre.

Herzliche Grüße

Prof. Heinrich Köster
Präsident der TH Rosenheim

Den Lehrenden geht es in diesem Punkt genauso: wie allen Bürger*innen stellt der Verlust des persönlichen Kontakts die größte Einschränkung dar.

Wir hoffen, dass die Impfkampagne im Jahr 2021 die Corona Krise beendet.

Viel Freude und viel Spaß bei der Lektüre des ersten Jahresberichts der Fakultät für Ingenieurwissenschaften.

Markus Stichler und Martin Versen

In den letzten Jahren gab es einen Rückgang bei der Anzahl der Studierenden in den Bachelorstudiengängen, der jedoch in der Gesamtzahl durch einen Anstieg im Bereich Master (AFE-M und ING-M) kompensiert worden ist, was in der Abbildung 3 an den Studienanfänger*innen zu erkennen ist.

Seit 2017 ist die Anzahl der Studienanfänger*innen in den vier Bachelorstudiengängen rückläufig, wohingegen im Master die Gesamtzahl von kleiner 50 (bis 2012) auf über 100 gestiegen ist.
Studiengang Bachelor Elektro- und Informationstechnik

Ausblick
Die Coronalage bestimmt weiterhin die Arbeit an der Hochschule.

Neue Professoren
Im Zuge des Generationenwechsels (Elektrotechnik- und Informationstechnik wurde 1995 gegründet und die Professorenschaft geht sukzessive in Pension) wurde Herr Prof. Dr. Frank King als Nachfolger von Prof. Dr. Schittenhelm zum Wintersemester 2019 neu an die TH Rosenheim berufen. Er vertritt die Lehrgebiete Regelungstechnik und Bewegungsührung. Weiterhin folgte Prof. Dr. Benedikt Dietrich mit den Fachgebieten Informatik und maschinelles Lernen auf den ausgeschiedenen Kollegen Prof. Dr. Reiner Schell. Mit den neuen Kollegen wird im Zuge einer Neuausrichtung bzw. Modernisierung ein erster Schritt zu aktuellen Themengebieten wie KI (Künstliche Intelligenz) und maschinellem Lernen begangen, ohne jedoch die Hardwarenähe zu verlieren.

Aktuelles
Das Sommersemester 2020 stand voll im Fokus der Coronaeinschränkungen. Alle Kollegen haben ihre Veranstaltungen online angeboten, praktische Laborübungen mussten entfallen. Wo es sinnvoll war, wurden Laborversuche online angeboten, bzw. sogar Hardware entwickelt und den Studierenden nach Hause mitgegeben.
Größere Verwerfungen mit dem Praxissemester, das im Winter durchzuführen ist, sind nicht aufgetreten. Die Studierenden konnten alle einen Platz in den Betrieben finden, wenn auch mit einiger Mühe; vielen Dank an die Betriebe in der Region!
Jubiläum 50- Jahre Kunststofftechnik
Der Studiengang Kunststofftechnik feierte im November 2019 im Rahmen einer sehr gelungenen Festveranstaltung das 50-jährige Bestehen. Rund 270 Gäste, darunter einige Absolventen der letzten 50 Jahre, besuchten die Festlichkeit. In all den Jahren hat die Technischen Hochschule Rosenheim etwa 2.000 Nachwuchskräfte für die Bereiche Produktentwicklung, Kunststoffverarbeitung und Materialentwicklung hervorgebracht. Die TH Rosenheim gilt, nach jahrelanger Erfahrung im Bereich der Kunststofftechnik, als „Mekka der Kunststofftechnik“ laut Prof. Dr. Heinrich Köster (Präsident der TH Rosenheim).

Zahlen und Fakten

Exkursion

Studentische Projekte
- Firma KraussMaffei GmbH (Spritzgußmaschinen):
 „Industrie 4.0 – Pre-Setting einer Spritzgießmaschine (Die autonome, „selbstlernende“ Spritzgießmaschine)“
- Firma ZwickRoell GmbH & Co. KG (Prüfmaschinen):
 „Untersuchungen zur Ermittlung der Schlagzähigkeitskennwerte von verstärkten und unverstärkten Kunststoffen im Vergleich zwischen Schlagbiege- und Fallwerkversuch“
- Firma Carl Zeiss AG (Mikroskopie):
 „Leitfaden für die Digitale Mikroskopie in der Kunststofftechnik“
- Firma Profol GmbH (Material und Halbzeug-Hersteller):
 „Evaluierung von Recyclingstrategien für unidirektional verstärkte GF-PP Platten mit bis zu 2 mm Dicke“
- Firma Hamberger Industriewerke GmbH (Produktion WC Sitze):
 „Spannungschaushalt bei Ureaformaldehyd WC Sitzen“
- Firma MD Elektronik GmbH (Hersteller für Elektronikstecker):
 „Rapid-Tooling für den Spritzguß von Steckerprototypen“

Curriculum

Zahl der Studienanfänger

„Coronasemester“

Angleichung der Studiengänge Maschinenbau und Kunststofftechnik

Interfakultäre Maschinenbaulabore
Ein Gremium aus Professoren der Fakultäten Ingenieurwesen, Wirtschaftsingenieurwesen und Holztechnik erstellt derzeit ein Konzept für die Modernisierung und Erneuerung der Ausstattung unserer Maschinenbaulabore, die fakul-

Neues Labor für Additive Fertigung

Modernisierung der Geräteotechnik
Die schnell voranschreitende Entwicklung von neuen Geräten und Verfahren in der Industrie erfordert auch besondere Anstrengungen, um das Equipment der Hochschule auf einem aktuellen Stand zu halten und so den Studierenden eine zeitgemäße Ausbildung bieten zu können. Aus dem laufenden Budget der Studiengänge ist dies in der Regel nicht finanzierbar, so dass das besondere Engagement der Kollegen notwendig ist, durch Anwerben von Förder- und Projektmitteln neue Geräte beschaffen zu können. Im Folgenden ist ein kurzer Überblick über eine Auswahl jüngster Anschaffungen aufgeführt.

REM

SLS-Drucker
Beim „Lasersintern“ handelt es sich um ein besonderes Verfahren aus dem Bereich der Additiven Fertigung. U.a. zeichnet es sich dadurch aus, dass keine Stützstrukturen benötigt

MultiJet-Drucker
Ebenfalls im Zuge der Aktivitäten hinsichtlich des Aufbaus eines Kompetenzzentrums für Additive Fertigung steht seit Oktober den Studierenden und Forschern der Hochschule auch ein neuer MultiJet-Drucker zur Verfügung. Mit diesem 3D-Drucker können an der Hochschule nun erstmals auch farbige Objekte sowie Objekte mit einstellbaren Materialeigenschaften generativ hergestellt werden.

CT-Scanner
Im Rahmen eines öffentlich geförderten Forschungsprojekts in der Kunststofftechnik konnte für die Hochschule ein industrieller Computertomograph beschafft werden, der neben der Forschung im Kunststoffbereich auch der Lehre im Maschinenbau zu Gute kommen soll. Die flexiblen Einsatzmöglichkeiten der Tomographie von Werkstücken führen derzeit zu einer immer größeren industriellen Verbreitung dieser Technologie sowohl in der Werkstoffprüfung als auch in der geometrischen Produktabsicherung. Mit dieser Anschaffung konnte sichergestellt werden, dass die Hochschule Rosenheim auch auf diesem Gebiet am Puls der Zeit ist.
Studiengang Bachelor Mechatronik

Entwicklung der Anfängerzahlen

Besondere Herausforderungen im SoSe2020 aufgrund der Corona-Pandemie

Flexibilität beim Praktischen Studiensemester

Nicht-dual Studierende wählen häufig das Modell mit Praxissemester, um in einem größeren Zeitrahmen ein umfangreiches Projekt bearbeiten zu können. Firmen, die dual Studierende beschäftigen, bevorzugen häufig das Modell ohne Praxissemester, da durch die sich wiederholenden Praxisblöcke zwischen den Theoriephasen eine intensivere Verzahnung zwischen Theorie und industrieller Praxis gegeben ist.

Dies ist vermutlich mit ein Grund dafür, dass der Anteil der dual Studierenden im Studiengang Mechatronik deutlich höher ist als bei anderen Ingenieurstudiengängen. Beispielsweise betrug im WiSe 2019/20 der Anteil der dual Studierenden im Studiengang Mechatronik 29%.

Die Durchführung der Lehrveranstaltungen unter diesen Bedingungen wurde von den Studierenden insgesamt positiv bewertet.

Entwicklung der Anfängerzahlen

Besondere Herausforderungen im SoSe2020 aufgrund der Corona-Pandemie

Flexibilität beim Praktischen Studiensemester

Nicht-dual Studierende wählen häufig das Modell mit Praxissemester, um in einem größeren Zeitrahmen ein umfangreiches Projekt bearbeiten zu können. Firmen, die dual Studierende beschäftigen, bevorzugen häufig das Modell ohne Praxissemester, da durch die sich wiederholenden Praxisblöcke zwischen den Theoriephasen eine intensivere Verzahnung zwischen Theorie und industrieller Praxis gegeben ist.

Dies ist vermutlich mit ein Grund dafür, dass der Anteil der dual Studierenden im Studiengang Mechatronik deutlich höher ist als bei anderen Ingenieurstudiengängen. Beispielsweise betrug im WiSe 2019/20 der Anteil der dual Studierenden im Studiengang Mechatronik 29%.
Fakultät & Studiengänge

Informationen zum Studiengang

Der Masterstudiengang ist speziell für Studierende konzipiert, die im ingenieurwissenschaftlichen Bereich in der Entwicklung technisch anspruchsvoller und komplexer Produkte maßgeblich mitarbeiten wollen. Er richtet sich daher vor allem an Studierende, die ihren zukünftigen beruflichen Schwerpunkt im Bereich der praxisnahen Grundlagenentwicklung und der anwendungsorientierten Forschung und Entwicklung sehen. Er bietet auch die Möglichkeit zur Vorbereitung auf eine eventuelle Promotion und schafft die Basis zur späteren Führungsverantwortung im Bereich technologisch anspruchsvoller Produkte.

In der Fakultät für Ingenieurwissenschaften sind unter einem Dach wesentliche Gebiete der Ingenieurwissenschaften zusammengefasst. Dadurch ist ein interdisziplinäres Arbeitsumfeld geschaffen, das in der akademischen Forschung und in der Produktentwicklung in der Industrie eine sehr hohe Bedeutung hat. Im Studiengang sind auch Studierende anderer ingenieurwissenschaftlicher Fachdisziplinen mit der oben beschriebenen Orientierung willkommen. Die Forschungsgebiete, die im Studiengang Angewandte Forschung und Entwicklung derzeit abgedeckt werden, sind:
- Chemieingenieurwesen
- Elektro- und Informationstechnik
- Energie- und Gebäudetechnologie
- Holztechnik
- Kunststofftechnik
- Maschinenbau
- Mechatronik
- Wirtschaftsingenieurwesen
- Chemieingenieurwesen
- Elektro- und Informationstechnik
- Energie- und Gebäudetechnologie
- Holztechnik
- Kunststofftechnik
- Maschinenbau
- Mechatronik
- Wirtschaftsingenieurwesen

Der Studiengang wurde im Sommersemester 2013 eingeführt. Die Anzahl Studierender hat sich relativ schnell sehr positiv auf die geplanten ca. 50 eingependelt. Studierende,
die den Masterstudiengang in den vergangenen Jahren abgeschlossen haben, waren vom Studienkonzept vor allem auf Grund des hohen Anteils an selbständigem und praxisnahem Wissenaufbau, sowie dem hohen Anteil an Arbeiten in Laboren der Hochschule, sehr angetan.

Weiterentwicklung des Studienganges

Informationen zum Studiengang
Um dem großen Bedarf an qualifizierten Fach- und Führungskräften nachzukommen, hat die Technische Hochschule Rosenheim den anwendungsorientierten Masterstudiengang Ingenieurwissenschaften konzipiert, dessen Lehrveranstaltungen in Englisch stattfinden. Durch die Vertiefung und Spezialisierung der in einem Bachelorstudium erworbenen Kenntnisse sowie die Vielfalt der interdisziplinären Inhalte werden die Studierenden auf anspruchsvolle ingenieurwissenschaftliche Tätigkeiten sowie einen schnellen Einstieg in Projekt- und Führungsverantwortung, vor allem bei internationalen Wirtschaftsunternehmen, vorbereitet.

Das Studium dauert 3 Semester (Vollzeitstudium) oder 6 Semester (Teilzeitstudium) und wurde 2016 erfolgreich reakkreditiert. Das Masterstudium vertieft die Qualifikationen auf dem Gebiet der mathematisch-naturwissenschaftlichen Grundlagen und verbessert durch eine interdisziplinäre Betrachtungsweise das Verständnis von Systemzusammenhängen. Durch die Wahl eines der folgenden Studienschwerpunkte bieten sich den Studierenden die Chance, das Studium entsprechend persönlicher Neigungen und Berufswünsche zu gestalten:
- Elektro- und Informationstechnik
- Mechatronik
- Maschinenbau und Kunststofftechnologie

Weiterentwicklung des Studienganges

Das Angebot an englischsprachigen Modulen konnte in

In meiner Funktion als Studiendekan möchte ich mich an dieser Stelle ganz herzlich bei meinen Kolleginnen und Kollegen für die engagierte und unermüdliche Unterstützung im Masterstudiengang Ingenieurwissenschaften bedanken.
Prof. Fabian Riß (Jahrgang 1985) ist neuer Professor für Leichtbau und zugehörige Fertigungstechnologien an der Fakultät für Ingenieurwissenschaften der Technischen Hochschule Rosenheim.

Der Forschungsschwerpunkt von Prof. Riß liegt in der Kombination des Leichtbaus mit den Additiven Fertigungstechnologien, um zukünftige Bauteile noch ressourceneffizienter herstellen zu können. In seiner Freizeit fährt er gerne Snowboard und ist in einer Band als Schlagzeuger tätig.

Zum Wintersemester 2019 besetzte Dr.-Ing. Frank A. King die Professur für Bewegungsführung und Regelungstechnik neu. In der Fakultät für Ingenieurwissenschaften wird er Bewegungsführung mechatronischer Systeme sowie Regelungstechnik lehren.

Zu Prof. Dr.-Ing. Kings Forschungsschwerpunkten gehören unter anderem die Trajektorienerzeugung, Bewegungsausführung und die Regelungsmethode zur Anwendung in der Robotik und im Maschinenbau.

Personal

Mitarbeiter Neubesetzungen

2020

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreas Bernatzky</td>
<td>Lehre mit dem Matlabbasierten Tool pzMove</td>
</tr>
<tr>
<td>Alois Inninger</td>
<td>Labor für Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>Sophia Hefenbrock</td>
<td>Wissenschaftl. MA</td>
</tr>
<tr>
<td>Bernd Wehnl</td>
<td>Techn. MA Metallverarbeitung/Werkzeugbau/Kunststofftechnik</td>
</tr>
<tr>
<td>Dengxia Wang</td>
<td>Wissenschaftl. MA</td>
</tr>
<tr>
<td>Prof. Dr. Paul Leather</td>
<td>Honorarprofessor</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Benedikt Dietrich</td>
<td>Technische Softwareentwicklung & Maschinelles Lernen / Computational Intelligence</td>
</tr>
<tr>
<td>Christina Just</td>
<td>Koordination Medizintechnik</td>
</tr>
</tbody>
</table>

2019

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Fabian Riß</td>
<td>Strukturleichtbau und zugehörige Fertigungstechnologien</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Frank King</td>
<td>Bewegungsführung und Regelungstechnik</td>
</tr>
<tr>
<td>Rajanya Yalamanchilli</td>
<td>Forschungsingenieur</td>
</tr>
<tr>
<td>Martin Krettek</td>
<td>Labor elektrische Antriebstechnik</td>
</tr>
<tr>
<td>Prof. Dr.-Ing. Matthias Winter</td>
<td>Aufbau- und Verbindungstechnik und Grundlagen der Elektrotechnik</td>
</tr>
</tbody>
</table>

Mitarbeiter Ruhestand & Ausscheiden aus der Fakultät

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Radlik</td>
<td>Kunststoffe in der Elektrotechnik</td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Schittenhelm</td>
<td>Automatisierungstechnik, Regelungstechnik</td>
</tr>
<tr>
<td>Prof. Dr. Reiner Schell</td>
<td>Informatik, Digitaltechnik</td>
</tr>
<tr>
<td>Alexander Kiermayer</td>
<td>Wissenschaftl. MA, Lehrkraft für besondere Aufgaben</td>
</tr>
<tr>
<td>Florian Buhleier</td>
<td>Techn. MA Metallverarbeitung/Werkzeugbau/Kunststofftechnik</td>
</tr>
<tr>
<td>Georg Lechner</td>
<td>Techn. MA Elektrotechnik</td>
</tr>
<tr>
<td>Katharina Hauke</td>
<td>Labor für elektr. Antriebstechnik</td>
</tr>
</tbody>
</table>
Fakultätssrat

Der Fakultätssrat ist zuständig in allen Angelegenheiten der Fakultät, für die nicht die Zuständigkeit des Dekans oder der Dekanin oder eines anderen Organs der Fakultät bestimmt ist (BayHSchG, Art. 31).

Mitglieder im Fakultätssrat ab 01.10.2019
(Amtszeit 01.10.2019 – 30.09.2021)
Dr. Martin Versen (Dekan)
Dr. Michael Wagner (Prodekan)
Dr. Martin Reuter
Dr. Herbert Thurner
Dr. Christian Meierlohr
Dr. Michael Schemme
Dr. Klaus Krämer
Dr. Markus Lazar (Vertreter Studiendekane) (seit 08.10.18)

Studentenvertreter
Sebastian Heitzmann (MEC B4)

Personalvertreter
Dipl.-Ing. Johann Kagerer
Wolf Schmederer (Ersatzvertreter)

Frauenbeauftragte
Prof. Dr. Nicole Strübbe

Senatsvertreter

Senat der Technischen Hochschule Rosenheim
Der Senat ist die „Legislative“ der Hochschule und beschließt unter anderem die Studien- und Prüfungsordnungen.

Gewählte Mitglieder

Professoren
Prof. Dr. Gerd Beneken
Prof. Dr. Dominikus Bucker (Fakultät ING)
Prof. Dr. Benno Eierle
Prof. Dr. Rudolf Hiendl
Prof. Dr. Bettina Schiessler
Prof. Gabriel Weber

Wissenschaftlich / künstlerische Mitarbeiter
Mathias Schmidt

Personal
Thomas Mix

Studierende
Stefan Alexander Eisner
Valentina Kapsreiter-Homeyer

Frauenbeauftragte
Prof. Dr. Brigitte Kölzer

Mitglieder mit beratender Stimme

Präsident
Prof. Heinrich Köster

Vizepräsident
Prof. Dr. Eckhard Lachmann

Vizepräsident
Prof. Dr. Peter Niedermaier

Kanzler
Ltd. RD Oliver Heller
Bricht der Fachschaft ING im Wintersemester 2019/2020 und Sommersemester 2020

Das Sommersemester war für alle kein leichtes Semester. Schnell mussten die Professor*innen und Studierenden reagieren und auf Online-Betrieb umstellen. Trotz der geringen Vorbereitungszeit wurde das Beste daraus gemacht. Wenn es doch mal nicht so geklappt hat, waren die Professor*innen für Vorschläge offen.

Gerade in der aktuellen Situation mit herausfordernden Bedingungen für Studium und soziales Leben im Allgemeinen möchten wir weiter Unterstützung für die Studierenden der Fakultät Ingenieurwesen anbieten. Viele unsere Aktivitäten konnten wir bereits an die gegebenen Umstände anpassen. Wir wollen uns für die konstruktive Zusammenarbeit im Fakultätsrat bedanken, da dort unsere Ideen stets auf offene Ohren stoßen.

Des Weiteren wollen wir Herrn Prof. Versen und dem ING-Sekretariat für die gute Zusammenarbeit und den reibungslosen Informationsaustausch danken.
Einrichtungen & Labore

Labor für Bewegungsführung und Systemdynamik
Prof. Dr.-Ing. A. King (Gebäude R, Raum 2.10)

Hintergrund und Motivation zum Neuaufbau

Zur Bedeutung der Bewegungsführung und Systemdynamik in Technik und Hochschulausbildung
Mechatronische Systeme zur Bewegungsausführung in mehreren Raumdimensionen (sog. Mehrachsinematiken) finden unter anderem in der Automatisierung, Produktion und Fertigung weltweit breiten Einsatz. Ihre Bedeutung wächst mit dem kontinuierlich steigenden Automatisierungsgrad in nahezu allen Bereichen stetig weiter an. Anwendungsbeispiele dieser Systeme finden sich exemplarisch in nachfolgenden Feldern:
- Robotersysteme
 - Klassische Industrierobotik
 - sowie moderne Themen der Mensch-Roboter-Kollaboration
- Numerisch gesteuerte Werkzeugmaschinen
- Montage- und Produktionsautomatisierung
- Additive Fertigungsverfahren
- Medizintechnik
- …

Moderne industriell eingesetzte bzw. sich in Entwicklung befindende Softwaresysteme zur Bewegungsführung be- rücksichtigen neben der geometrischen Anordnung der sich bewegenden Systemteile auch elastische Effekte der Mechanik, die Charakteristik des mechanischen und elektrischen Antriebsstrangs, technische Limitierungen des Mechatroniksystems sowie die geometrische Fehlerfortpflanzung dieser Effekte bis hin zum sogenannten Endeffektor (häufig: das Bearbeitungswerkzeug). Die Entwicklung eines Systems zur Bewegungsführung steht insofern auch beispielhaft für das durch die zunehmende Digitalisierung neu geprägte Berufsfeld von Ingenieurinnen und Ingenieuren, bei dem neben klassischen Ingenieurwissenschaften die Bereiche Echtzeitsoftwaresysteme, Algorithmen, numerische Simulation und die Interaktion von Softwaresystemen eine zentrale Rolle spielen.
Der Analyse, dem Verständnis und der Beherrschung dieser fortgeschrittenen Themen der Bewegungsführung in der Hochschulausbildung als auch darüber hinaus für F&E-Vorhaben kommt insofern eine gesteigerte Bedeutung für die Fakultät Ingenieurwissenschaften zu. Diese bildet sich in der Neuausrichtung des Labors folgerichtig ab.

Überblick zur aktualisierten Laboraufteilung

Die wesentlichen Element sowie die geplante Neuaufteilung des Labors „Bewegungsführung und Systemdynamik“ illustriert die nachfolgende Laborskizze.
Einzahl in der Lehre

Ausstattung des Labors

Neben der Analyse der Störaussendung besteht zudem die Möglichkeit, elektronische Baugruppen hinsichtlich gestrahlter bzw. leitungsgebundener Störempfindlichkeit normgerecht zu analysieren und daraus Maßnahmen zur Erhöhung der Robustheit abzuleiten. Dies umfasst auch normnahe Tests bezüglich elektrostatischer Entladung (ESD) nach dem Human-Body-Model bis 25 kV.

Dies erfolgt unter dem Einsatz von diversen Koppel-/Entkoppelnetzwerke für sinusförmige und impulsförmige Störgroßen (Fa. Schaffner). Mit Hilfe von Signalgeneratoren (bis 10 GHz) und von breitbandigen Hf-Leistungsverstärkern (100 kHz-200 MHz, 75 W und 80 MHz-1 GHz, 25 W) können gezielt Störgroßen auf Baugruppen und Komponenten eingeprägt werden.
Elektromagnetische Feldberechnung

Ein zunehmend wichtiger Bereich in der EMV ist die numerische Feldberechnung, um beobachtete Störungen besser zu verstehen, kritische Koppelpfade zu identifizieren, Störquellen zu eliminieren und Entstörmaßnahmen gezielter einsetzen zu können. Zu diesem Zweck wurden Rechnerarbeitsplätze für die numerische Modellierung elektromagnetischer Felder installiert. Die Berechnungsmethoden (u.a. für elektromagnetische Felder, Multi-Physics gekoppelt) beruhen auf

- Finite Element Methode (elmerFEM), option mit Cluster
- Finite Differenzen Methode (FDTD: openEMS, meep), option mit Cluster
- Momentenmethode (MoM: NEC2, scuff-EM, concept-II)

Für umfangreiche numerische Modellierungen wurde ein Cluster für parallele und verteilte Berechnungen eingerichtet (Linux Mint 17.3, 92 Kerne, 280 GB Arbeitsspeicher).

Diese Berechnungsmethoden kommen aber auch in der Lehre bei theoretischen Modulen zur Anwendung (Mastervorlesung Elektrodynamik). Nachstehend einige Beispiele aktueller Simulationen.

Kooperationen

Aktuelle Projektpartner sind Siemens AG, Siteco GmbH und x-log GmbH.
Das Labor für Grundlagen der Elektrotechnik 1 (R0.24) ist ein typisches Lehrlabor, in dem viele Praktika zu den Lehrveranstaltungen für die Studiengänge der Fakultät ING stattfinden.

Das Labor für Grundlagen der Elektrotechnik 1 besitzt 12 Universalexperimentierplätze mit folgenden Standardgeräten, die für alle Experimente zur Verfügung stehen:

- Zwei 4½ stellige Digitalmultimeter
- Universal Funktionsgenerator
- Dreifachnetzgerät für mittlere Leistungen
- Desktop PC mit Flachbildschirm
- Experimentier-Steckboards mit 19 mm bzw. 2,54 mm Abständen

selbst Schaltungen aufgebaut werden können, einschließlich aller zum Löten benötigten Geräte und Werkzeuge.

Einrichtungen & Labore

Labor für industrielle Leit- und Automatisierungstechnik
Prof. Dr.-Ing. habil. Klaus Krämer, Dipl. Ing. (FH) Peter Crämer, Raum S 1.48

Herkunft
Mit dem Entschluss, die Automatisierungstechnik bei ING zusammenzufassen (2015), gingen die Labore Steuerungstechnik und Regelungstechnik der Fakultät HTB zu ING über. Im ersten Schritt musste die Laborfläche auf die Hälfte gekürzt werden, da die Laborausstattung und zugehörige Lehrkräfte zwar übergingen, dies aber nicht gleichermaßen für die Laborfläche geregelt wurde.

Folglich war man im Labor die erste Zeit damit beschäftigt, die vorher auf zwei Laborflächen aufgeteilten Praktika sowie die zugehörige Gerätetechnik auf einer Fläche zusammenzuführen. Gleichzeitig war eine Umstellung der Steuerungssoftware auf das TIA-Portal zu bewältigen.

Entwicklung

Nächste Schritte
Gerade im Rahmen der Diskussion Industrie 4.0 bis hin zu CPS Systemen ist die Beschäftigung mit dem Machbaren in der Informationsvernetzung bis hinunter zum Automaten und in den Automaten bis zum Sensor ein wesentlicher Teil der modernen Ausbildung eines Ingenieurs für industrielle Anwendungen von und für Maschinen.

Mit Industrie 4.0 und den häufig angeführten Themen des Condition Monitorings, des Predictive Maintenance bis hin zum Performance Monitoring kommt hier immer mehr Bedarf an Zusatzsignalen nahe der Anlage sowie an Datenbankanbindung bis zur Cloud auf. Dem wird Rechnung getragen durch das zuletzt beschaffte und erweiterte mobile System zur Prozessdatenerfassung.

Die Entwicklung der Automatisierung hält dieser Jahre nicht inne. So werden entsprechend die Praktika im Labor stetig aktualisiert. Auch die zugehörigen Vorlesungen werden den Entwicklungen folgend immer wieder angepasst, um von den

Bild: Peter Crämer, Abbildung 30: Schnappschuss Labor Industrielle Leit- und Automatisierungstechnik

Bild: Dr. Klaus Krämer, Abbildung 31: Einfache Visualisierung des Kettenförderers im Leitsystem
Grundlagen bis hinauf zu Industrie 4.0 das Spektrum der industriellen Automatisierungstechnik immer aktuell abzudecken.

Im ING-Master werden weitere Funkprotokolle behandelt – einschließlich den Mobilfunkstandards LTE & 5G. Die wichtigsten Messgeräte für Untersuchungen von Mobilfunkprotokollen und -signalen sind ein Mobilfunktester CMW500 der Firma Rohde&Schwarz, sowie breitbandige Software Defined Radios USRP von National Instruments:

Neben Praktika & Abschlussarbeiten finden im Labor auch sog. Master-Projekte statt, bei denen die Teilnehmer in Gruppen von 3-5 Studierenden nicht nur fachliche Erfahrungen sammeln sollen, sondern explizit auch in das Projektmanagement eingeführt werden.

von vorneherein festgelegt. Es gibt also zu einem festgelegten Termin ein Ergebnis – und auch die zugehörige Benotung – allerdings wird erst gegen Ende des Projektes, im letzten Sprint, geplant, wie das Ergebnis im Detail ausschauen soll:

Besondere Bedingungen während der (Corona) Semester: Es war möglich, einen Großteil der Praktikumsversuche so umzustellen, dass diese aus der Ferne durchgeführt werden konnten: Dazu installierten sich die Teilnehmer die nötige Software entweder direkt auf Ihrem eigenen PC, oder sie besuchten das Labor mittels VPN (Virtual Private Network)-Verbindung. So konnten alle Teilnehmer problemlos von zu Hause die im Labor vorhandene Hardware nutzen, ohne eine Maske zu tragen oder eine Ansteckung riskieren zu müssen.
Einrichtungen & Labore

Labor für Leistungselektronik
Prof. Dr. tech. Norbert Seliger

Kompetenzen

In der vertiefenden Lehrveranstaltung Power Electronic Circuit Design im Master Ingenieurwissenschaften werden isolierende Topologien von Gleichspannungswandlern berechnet und simuliert. Ein besonderes Augenmerk wird hierbei auf die Auslegung der magnetischen Komponenten wie Speicherspulen und Transformatoren gelegt. Zu diesem Zweck wurden Rechnerarbeitsplätze für die numerische Modellierung elektromagnetischer Felder installiert. Die Berechnungsmethoden (u.a. für elektromagnetische Felder, Multi-Physics gekoppelt) beruhen auf

- Finite Element Methode (elmerFEM, option mit Cluster),
- FEMM
- Finite Differenzen Methode (FDTD: openEMS, meep), option mit Cluster
- Momentenmethode (MoM: NEC2, scuff-EM, concept-II)

Für umfangreiche numerische Modellierungen wurde ein Cluster für parallele und verteilte Berechnungen eingerichtet (Linux Mint 17.3, 92 Kerne, 280 GB Arbeitsspeicher).
F&E-Projekte und Themen

Unsere langjährige Erfahrung in der Entwicklung leistungselektronischer Schaltungen konnten wir in den letzten Jahren erfolgreich in F&E-Projekte mit Industriepartnern einbringen, beispielsweise.

- Probabilistic model based analysis of electrolytic capacitor ageing and failures in a single-phase power factor correction circuit
- Partial-Element-Equivalent-Circuit Modelle (PEEC modeling)
- RF power electronics for wireless power transfer (13.56 MHz und 866 MHz)
- Resonante Multi-MHz-DC/DC-Wandler für LED-Anwendungen (Siemens AG)

Cluster Leistungselektronik im ECPE

Wir freuen uns, dass das Labor für Leistungselektronik seit Juni 2020 als Kernakteur des Cluster Leistungselektronik im European Center of Power Electronics aufgenommen wurde. Dies ist eine Anerkennung unserer Mitwirkung bei internationalen Fachkonferenzen als Gutachter, Chairman und durch regelmäßige wissenschaftliche Beiträge.

Ausstattung

Die Ausstattung des Labors konnte durch die Unterstützung unserer Kooperationspartner aus der Industrie auf einen aktuellen technischen Standard gebracht werden:

Das Labor für Leistungselektronik bietet die Möglichkeit, leistungselektronische Baugruppen bis zu 20 kVA umfangreich zu charakterisieren, beispielsweise durch den Einsatz von

- 3-Phasen AC Netzteil bis 5 kVA (arbiträr), DC-Netzteile bis 20 kW
- Diverse elektronische Lasten (DC bis 1 kVA, AC bis 8 A), Thermostat für Flüssigkeitskühlung, Widerstandslasten bis 13 kW
- Diverse Frequenzumrichter (frei konfigurierbar), Thyristorsteuerungen
- Leistungsmessung, Strommessung bis 100 MHz bzw. bis 2 kA (Power Quality), diverse Osilloskope (bis 6 kV, bis 1 GHz)
- Schaltmessplatz und Kennlinienmessplatz für Leistungs- transistoren (bis zu 3 kV, 100 A)
- Infrarot-Thermografie

was bei anderen Verfahren wie der Infrarotspektroskopie ein K.O.-Kriterium ist. Die Kunststoffe lassen sich in unterschiedlichen Wassertiefen unterscheiden und identifizieren. Einzig die Temperaturabhängigkeit des umgebenden Mediums muss in weiteren Untersuchungen berücksichtigt werden.

Das Labor und der Vorbereitungsraum (R0.26) besitzen eine umfangreiche Sammlung von Standardbauelementen zur Schaltungsentwicklung mit Widerständen, Kondensatoren, Spulen sowie vielen analogen und digitalen ICs, die ständig ergänzt und auf aktuellem Stand gehalten wird. Schaltplan- und Layoutentwicklung erfolgen entweder mit EAGLE oder mit Mentor Graphics. Beides sind in der Industrie verwendete Standardprogramme, wobei EAGLE hauptsächlich bei Projekten mit Studenten verwendet wird, da die Einarbeitungszeit dafür verglichen mit dem weitaus mächtigeren Programm Mentor Graphics wesentlich kürzer ist, allerdings auch nicht so viele Möglichkeiten bietet.

Zweilagige Leiterplatten können durch Herrn Kipfelsberger im Labor R-1.22 selbst hergestellt werden, die für viele Projekte mit Studenten und für die Lehrveranstaltungen E-Praxis sowie Leiterplattentechnik ausreichend sind. Leiterplatten mit mehr Lagen und Durchkontaktierungen müssen außer Haus gefertigt werden.

Eine kleine Drehmaschine und ein Fräs- und Bohrmaschine im Vorbereitungsraum dienen dazu, kleinere mechanische Komponenten herzustellen bzw. zu bearbeiten, ohne auf eine zentrale Werkstatt angewiesen zu sein, was die Flexibilität im Entwicklungsprozess wesentlich erhöht. Auch das Wickeln von Spulen ist damit möglich.

Bild: Stefan Kipfelsberger, Abbildung 49: Bestückung einer Leiterplatte
Projekte

Labor für Montageautomatisierung und Robotik
Prof. Dr. -Ing. Christian Meierlohr
Roboter und Software machen Studierende der TH Rosenheim fit für Herausforderungen in der Automatisierung von Produktionsprozessen

Kompetenzen

Labor-Ausstattung

Hardware
- Mobiler Roboter YouBot der Fa. KUKA auf OmniMove-Plattform
- 6-Achs-Knickarmroboter KUKA Agilus sixx für Handling- und Montageaufgaben (Traglast bis 6 kg)
- 6-Achs-Knickarmroboter KUKA KR5 ARC für Handling- und Montageaufgaben (Traglast bis 16 kg)
- Bildverarbeitungssystem Q.Vitec mit Anbindung an 6-Achs-Knickarm-Roboter
- Roboter-Greifer in pneumatischer und elektrischer Ausführung (Fa. SCHUNK): Parallel- und Zentriegreifer, Langhubgreifer, Greifer-Wechselsysteme für den flexiblen Einsatz an den vorhandenen Robotern
- Werkstück-Träger-Transportsystemen BOSCH WT1 mit 4 Arbeitstationen, RFID-Codierung der Werkstückträger
- Montagetechnik: Elektroschraubgerät IMOTEC, Vibrationsswendelförderer SORTIMAT

Software
- Software SIEMENS TIA-Portal zur Programmierung von SPS-Steuerungen inkl. OPC/UA-Anbindung
- Software KUKA Sunrise Workbench zur Java-orientierten Programmierung des LBR iiwa
- Software KUKA.SIM Pro und Office.Lite zur Modellierung und Simulation von Automatisierungsaufgaben sowie zur Off-Line-Programmierung von Industrierobotern
- Software Tecnomatix JACK zur Modellierung und Simulation von manuellen Montageabläufen mittels 3D-Mensch-Simulation
Lehre und Ausbildung

Das Interesse für die Automatisierung und besonders für die Robotik wird schon vor Studienbeginn geweckt: MINT-Tage oder der Girl’s Day sind Veranstaltungsformate für interessierte Lehrer und Schülergruppen.

Im Sommer 2020 sind ausgewählte Versuche in einer Art erweitert und umgestaltet worden, dass die Programmierung und Bewegungsführung von Industrierobotern vollständig in einer virtuellen, drei-dimensionalen Arbeitsumgebung erfolgen kann. Studenten können sich in virtuellen Arbeitsgruppen mit den Dozenten austauschen und an digitalen Zwillingen der Labor-Geräte die Inhalte der Praktika bearbeiten.
Das Nahebringen besteht dabei aus drei Elementen:

1. Ansprechende Versuche

Die Lernversuche sind ebenfalls von Studenten für Studenten entwickelte Versuche, die durch ihren einfachen Aufbau, ihre einfache Funktionsweise und die geringen Kosten bestechen. Sie sind dafür gedacht, dass die Studenten sie in ihrem „Home-Lab“ nachbauen und selber mit ihnen Versuche durchführen können, um die in der Vorlesung erlernten Methoden anwenden zu können – besonders in Corona-Zeiten ist das ein sehr großer Vorteil. Diese Versuche sollen dazu dienen, die
Brücke zwischen Theorie und Praxis zu schließen. Zu nennen sind dabei die Versuche Füllstandregelung in Abbildung 60, Abstandserregelung in Abbildung 63, und Temperaturregelung in Abbildung 65.

2. Entwicklung regelungstechnischer Verfahren nur mit Wissen aus dem Bachelor-Studium

3. Das Lerntool pzMove

Parallel zur Vorlesung wurde seit 2011 mit bisher acht Studenten für die Studenten ein regelungstechnisches Lerntool entwickelt, mit dem sich die Verfahren aus der Vorlesung ausprobieren lassen. Sein Name „pzMove“ ist der ursprünglichen Kern-Funktionalität entnommen, durch eine graphische Nutzerschnittstelle kann man die “poles” (Pole) und „zeros“ (Nullstellen) – verschieben („move“) und die Auswirkungen gleich studieren zu können.

Einrichtungen & Labore

Peter Zentgraf, 07. August 2020

Bild: Dr. Peter Zentgraf, Abbildung 66: Vorhersage eines Prozesses (grün gestrichelt) aus den blau gekreuzten Messdaten

Bild: Dr. Peter Zentgraf, Abbildung 67: Mit pzMove lassen sich die Auswirkungen der Lage von Polen und Nullstellen auf Kenngrößen wie Sprungantwort und Bode-Diagramm untersuchen
Forschung und Weiterbildung

Kontakt und weitere Informationen
Prof. Dr.-Ing. Christian Meierlohr
(christian.meierlohr@th-rosenheim.de)
Homepage: https://www.th-rosenheim.de/die-hochschule/fakultaeten-institute/fakultaet-fuer-ingenieurwissenschaften/laboratorien/labor-fuer-montageautomatisierung-und-robotik/

Bildmaterial
Dateien im .ZIP-Archiv: Labor_MeCh_Bildmaterial_Jahresbericht.zip

HS_20200829_Seiten aus Jahresbericht-HTB-19_Laborvorstellung.pdf

Ziel

Die im vergangenen Jahr durchgeführten studentischen sowie geförderten Forschungs- und Entwicklungsprojekte orientierten sich in den folgenden Bereichen:

- Werkstoffliches Recycling von glasfaserverstärkten Kunststoffen
- Prozessanalyse der Duromerverarbeitung
- Automatisierung des Spritzgießprozesses via Regelalgorithmen
- Materialentwicklung hin zur Mikrowellenaktivität von Kunststoffen
- Holz-Kunststoffverbunde
- Materialentwicklung naturfaserverstärkter Kunststoffe
- CFD-Simulationen von Luftströmungen im Reinraum
- Visualisierung von thermischen Strömungen mittels Schlierenfotografie

Um zukünftig eine erneut höhere wissenschaftliche Tiefe in Abschlussarbeiten, studentischen Praktika und Lehrinhalten zu ermöglichen, konnten im Rahmen der geförderten Forschungsprojekte folgende Gerätschaften dem Technikum sowie dem Prüflabor hinzugefügt werden:

- Computertomograph (CT)
- Fallwerk
- Probenfräse
- Klimaschrank
- Schleif- und Poliermaschine
- Mikrotom
- Holmlose Spritzgussmaschine Engel VC200/80 inkl. Linearroboter
- Laminar-Flow-Modul für den Reinraum
- Nebelgenerator zur Strömungsvisualisierung
- Parabolspiegel zur Schlierenfotografie

Mit den neu angeschafften Gerätschaften wird insbesondere der analytische Schwerpunkt weiter ausgebaut. Die Probenfräse ermöglicht die Probenentnahme aus Bauteilen sowie aus gefertigten Platten, wodurch prüfungsbeeinflussende Orientierungen in den ansonsten direkt gespritzten Prüfkörpern alterniert werden können und somit anwendungsnahe Eigenschaftsbestimmungen möglich sind.

Das Mikrotom sowie die Schleif- und Poliermaschine unterstützen die mikroskopischen Untersuchungen, welche insbesondere im Bereich der geschäumten Kunststoffe sowie naturfaserverstärkten Kunststoffen ein tiefergehendes Materialverständnis ermöglichen.

Der Computertomograph soll dieses tiefergehende Materialverständnis weiter ausbauen und bietet erstmals die Möglichkeit an der TH-Rosenheim zerstörungsfreie Analysen vom Bauteilinneren. Hierdurch können bspw. eingebaute Fasern aller Art (z.B. Glasfaser und Holzfaser) auf die effektive Faserlänge sowie Faserorientierung untersucht werden.

Bild: Stephan Puntigam, Abbildung 69:
Strömungsvisualisierung durch Schlierenphotographie einer brennenden Kerze

Neben der Lehrtätigkeit liegt der Augenmerk des Technikums auf Industrie- und Forschungsprojekten. Eine große Bandbreite an Problemstellung aus dem Bereich Compoundierung und Materialentwicklung kann durch einen modernen Doppelschneckenextruder abgedeckt werden.

Seit der Übernahme der Extrusionsabteilung durch Frau Prof. Dr.-Ing. Nicole Strübbe vor knapp 5 Jahren wird der Forschungsbetrieb stetig vorangetrieben. Es konnten innovative Forschungsprojekte aus unterschiedlichen Bereichen mit der Ausrichtung zur Nachhaltigkeit, erneuerbaren Materialien und Recycling akquiriert werden. Wichtig ist die industriennahe Forschung an aktuellen Problemstellungen und direkte Produktweiterentwicklungen.

Projekt HKH-Textil

HKH-Textil setzt direkt nach Conplasite an. Durch die Verbindung von Holzfasern und Holzderivaten mit Kunststoffen wird die Bioökonomie von Bauwerken weiter verbessert. Die Erkenntnisse aus Conplasite fließen direkt ein, um hochspezialisierte Filamente aus dem Hybridwerkstoff Holz/Kunststoff zu erzeugen und in einem weiteren Schritt, in Zusammenarbeit mit der Hochschule Kaiserslautern und der BASF, Gewebe und Gelege für die Betonbewehrung zu entwickeln.

Projekt Biologisch abbaubarer Polymerschaum

Projekt Woporex

Projekt Interner Recycling-Kreislauf TH Rosenheim

Projekt Verzugsarmer 3D-Druck

Projekt Kunststoff als optische Temperaturanzeige

Bild: Michael Sigrüner,
Abbildung 80: Herstellung Probekörper „Corona“-Haken durch Firma Impetus
a) Ausgangszustand
b) Farbveränderung durch Temperatureinwirkung
In der Arbeitsgruppe F&E Kunststofftechnik von Herrn Prof. Michael Schemme und Herrn Prof. Peter Karlinger arbeiten acht wissenschaftliche Mitarbeiter/innen an folgenden Forschungsschwerpunkten:

- Recycling und Faserverbundtechnik
- Nachwachsende Rohstoffe (z.B. Holzfaser verstärkte Kunststoffe)
- Energieeffizienz (z.B. Mikrowellenschweißen)
- Prozesstechnik (z.B. Schäumen von Elastomeren)
- Reinraumtechnik (z.B. Partikelfreie Produktion von Thermoplasten)

Recycling
Die Projektinhalt betrifft dabei den aktuellen Zeitgeist. So beschäftigt sich die Arbeitsgruppe mit dem Recycling von thermoplastischen Faserverbundkunststoffen (Projekt ReProOrgano):

Im Leichtbau findet zunehmend eine Funktionalisierung von thermoplastischen Faserverbundwerkstoffen statt. Dabei ist das Spritzgussverfahren von thermoplastischen Kunststoffen in Kombination mit endlosfaserverstärkten Thermoplasten (Organoblechen) besonders geeignet. Für die Herstellung von Hybridbauteilen fällt aufgrund der spezifischen Konfektionen und lastgerechter Orientierung im späteren Bauteil, eine konstante Menge Verschnitt an. Im Projekt ReProOrgano wird ein geschlossener Recycling-Kreislauf der Verschnitte mit einer hohen Wertschöpfung und hohen Qualität des Endresultates angestrebt.

Nachwachsende Rohstoffe
Durch die Forschungsanlage MUNACU gemeinsam mit Herrn Prof. Andreas Michanickl kann man inzwischen von einer gemeinschaftlichen Arbeitsgruppe Holz- und Kunststofftechnik sprechen, welche insgesamt 12 wissenschaftliche Mitarbeiter/innen zählt. Die gemeinschaftliche Arbeitsgruppe beschäftigt sich mit Biokunststoffen (NaVerPa, LaHoCo) und holzfaser verstärkten Kunststoffen (LFWC, NFRipp).

Bild: Frederik Obermeier, Abbildung 81: Dr. Michael Schemme
Bild: Sabine Hummel, Abbildung 82: Prozesskette des Projekts ReProOrgano zum Recycling von thermoplastischen Faserverbundkunststoffen
Bild: Frederik Obermeier, Abbildung 83: Hybridverbund-Probekörper mit Holzfaserverstärkung (Hintergrund), Hackschnitzel und Fasern aus Fichte (Vordergrund)
Energieeffizenz und Prozesstechnik

Reinraumtechnik

Aktualität der Forschung und Lehre

Projekt EAGLE geht in die Luft

Hohe Leistungsdichte, hohe Wirkungsgrade sowie Wartungsfreiheit und Emissionsfreiheit machen Elektroantriebe auch für Luftfahrtsanwendungen relevant (vgl. [1],[2]). Im Rahmen des Projekts EAGLE entwickeln Studenten der TH Rosenheim seit 2014 gemeinsam mit Studenten der Flugwissenschaftlichen Vereinigung Aachen e.V. (FVA) an der RWTH Aachen einen leisen und zuverlässigen elektrischen Hilfsantrieb für ein Leistungssegelflugzeug.

Moderne Leistungssegelflugzeuge besitzen häufig einen ausfahrbaren Hilfsmotor, auch ‘Heimkehrhilfe’ genannt, der eine Reichweite von etwa 150km ermöglicht. Dieser dient nicht zum Eigenstart, sondern soll bei fehlendem Aufwind das Risiko einer Außenlandung vermeiden. Derartige Hilfsantriebe basieren bisher auf sehr einfachen 2-Takt-Motoren, die typischerweise keinen Anlasser haben, sondern per ‘Windmilling’ gestartet werden müssen. Ein batterie-elektrisches System bietet bei gleichem Gewicht zwar etwas geringere Reichweite, hat dafür aber wesentliche, u.a. auch sicherheitsrelevante Vorteile gegenüber einem konventionellen System mit Verbrennungsmotor:

- Einfachere Bedienung, die Antriebsleistung steht praktisch verzögerungsfrei zur Verfügung
- Weitestgehende Verschleißfreiheit, dadurch höhere Zuverlässigkeit
- Keine signifikante Leistungsabnahme mit der Flughöhe
- Deutlich geringere Lärmentwicklung und geringere Vibratien
- E-Motoren sind leichter, kleiner und vibrationsärmer, damit kann der Motorträger leichter und aerodynamischer ausgeführt werden

Bild: Flugwissenschaftliche Vereinigung Aachen e.V., Abbildung 87: Erprobungsträger FVA-29 mit 20kW Elektromotor als Hilfsantrieb auf der Aero 2018

Technische Besonderheiten

Zentraler technischer Aspekt ist ein ’Low-Voltage-Ansatz’ [3]: die Batteriespannung beträgt ca. 60V. Damit entfallen viele der sonst erforderlichen Hochspannungs-Schutzmaßnahmen. Auch das Batteriemanagementsystem wird deutlich weniger komplex. Wie bei Automobil-elektronik sind die Teilsysteme via CAN-Bus verbunden.

Abb 89: Erstflug des Erprobungsträgers mit ausgefahrenem Motorträger (Foto: Tobias Barth / FVA 2019)

Bild: Technische Hochschule Rosenheim, Bachelorarbeit, Abbildung 90:

![Application Layer Diagram](image)

Bild: Technische Hochschule Rosenheim, Bachelorarbeit, Abbildung 91:

![Prüfstandsdatenauswertung per Kalman-Filter-Schätzung aus 11 Messwerten zeigt Motorwirkungsgrad von 90% (vgl. Diagramm Mitte, aus [5]))

Bild: Dr. Birger Mysliwetz, Abbildung 92:

Motor-Belastungsstand und Batteriebank mit Energierückspeisung
Besonderes Augenmerk wurde auf die Software-Architektur gelegt, um im Rahmen des Entwicklungs-Prozesses größtmögliche Flexibilität auf der Hardwareseite zu haben: Da von vorne herein mehrere Elektromotorvarianten inkl. zugehöriger Wechselrichter als auch unterschiedliche Batteriemanagement-Systeme (BMS) über die ECU ansteuerbar sein sollten, wurden dafür hardwareunabhängige Geräteabstraktionen in der Software angelegt. Diese Struktur erleichtert es signifikant, unterschiedliche Wechselrichter und BMS zu integrieren, vergleichbar mit austauschbaren ‘Gerätetreibern’ für unterschiedliche Grafikkarten oder Drucker im PC-Bereich (Abb. 90).

Um die Zuverlässigkeit zu erhöhen und Programmierfehlerquellen zu minimieren, wird Software gemäß dem MISRA-C:2012 Codingstandard entwickelt und mit Werkzeugen zur Statischen Codeanalyse vorab geprüft.

Projektstatus & Ausblick

Literatur/Quellen

Allgemeine Informationen zum Projekt

Titel des Projekts (gem. Projektantrag/Vertrag)
EAGLE – Electric Auxiliary Propulsion for a Glider

Forschungskompetenzfeld
IuK

Projektleitung
Prof. Dr.-Ing. Birger Mysliwetz
Tel.: +49 (0) 8031 805-2716
birger.mysliwetz@th-rosenheim.de

Kooperationspartner
• Flugwissenschaftliche Vereinigung Aachen e.V. (Studentische Forschungsgruppe der RWTH Aachen)
• Prof. Dr. Rainer Klein, Duale HS Baden-Württemberg Mosbach, Mechatronik-Elektromobilität

Projeklaufzeit (von/bis)
2014 - 2022

Förderung durch
• Messerschmitt Stiftung München
• Alexander Schleicher Segelflugzeugbau GmbH & Co
Im Auftrag der Bauer Group wurde vor einigen Jahren an der TH Rosenheim diese Anlage zur optischen Vermessung des lichten Spaltes zwischen zwei gepaarten Verdichterschrauben entwickelt und realisiert. Die Anlage ist heute in den Fertigungsprozess zur begleitenden Qualitätssicherung eingebunden. Der lichte Spalt wird unter einem bestimmten Blickwinkel sichtbar.

Während des Messvorgangs werden die Rotoren automatisch mehrfach gegeneinander verdreht, um alle möglichen Zahnpaarungen einzustellen. Haben beispielsweise der Hauptrotor vier und der Nebenrotor fünf Zähne, so ergibt sich eine Zahl von $4 \cdot 5 = 20$ Paarungen.

Die Spaltbreitenverläufe werden mit einer Genauigkeit von $\pm 0.006 \text{ mm}$ erfasst und daraus wichtige Qualitätsmerkmale der Verzahnung bestimmt, wie Steigungs-, Teilungsfehler und das Verdrehspiel (“Backlash”).

Die komplette Anlage wurde an der TH Rosenheim entwickelt: Die mechanischen und elektrischen Komponenten, die Bildverarbeitungssoftware sowie die Software zur Anlagensteuerung und Anlagensicherheit.

Für die CE-Kennzeichnung der Anlage wurde ein externes Unternehmen beauftragt.

Diese ist insbesondere im Kabelkanal für die Leitungen vom Umrichter zu den Motorwicklungen zu beachten (siehe Messung in Abb. 100).
Abschließend wurde die Schirmungswirkung eines Gehäuseprototypes hinsichtlich Störabstrahlung bewertet (Pre-compliance Messung in der Abschirmkammer in 3 m Abstand, siehe Abb. 103).

Mit zunehmender Verfügbarkeit von sehr schnellen, parallelisierten Rechnerarchitekturen haben sich auch rechenintensive Softwarealgorithmen etabliert. Hier sind insbesondere die Faltungsnetze, engl. Convolutional Neural Networks (CNN), als Untergruppe Neuronaler Netze, zu nennen. Diese CNN eignen sich sehr gut für die optische Bauteil-Lokalisierung.

An der TH Rosenheim wurde ein spezielles CNN entwickelt, welches weniger als eine Sekunde benötigt, um die zweidimensionalen Positionsdaten (X, Y und Drehwinkel γ) von Bauteilen zu bestimmen. Für das Training dieses CNN werden umfangreiche Trainingsdaten in Form von Bildern und zugehörigen Annotationen benötigt, die am besten automatisiert erstellt werden. Denn der manuelle und zeitliche Aufwand wäre zu hoch, um die benötigte Zahl an Trainingsdaten zu generieren.

Für das rechenintensive Training des CNN werden Hochleistungs-Grafikkarten verwendet, weil sie sich wegen ihrer großen Anzahl paralleler Rechenkerne und einem integrierten RAM-Speicher sehr gut dafür eignen.

Kamerabasierte Lokalisierung von Bauteilen

Prof. Dr.-Ing. Michael Wagner

Bilder: Dr. Wagner, Abbildung 105: Synthetische Erzeugung von Trainingsdaten

Bilder: Dr. Wagner, Abbildung 106: Schnelle Grafikkarte

Bilder: Dr. Wagner, Abbildung 107: Modellierung des Bauteils in Blender
150 Schüler testen MINT-Studiengänge an der TH Rosenheim

Zum Auftakt der halbtägigen Veranstaltung gaben die Dekane der Fakultäten den Schülerinnen und Schülern einen Überblick über Lehre, Forschung und Entwicklung an der TH Rosenheim und gingen dabei insbesondere auf die MINT-Studiengänge ein. Anschließend ging es direkt in die Praxis.

In verschiedenen Workshops konnten die Schülerinnen und Schüler ausgewählte Verfahren und Versuche aus den einzelnen Fakultäten kennenlernen und selbst durchführen: Ein Kleinwindrad zeigte, wie Energie aus Luftströmen gewonnen wird, programmierbare Roboter aus Lego-Steinen veranschaulichten spielerisch eine agile Softwareentwicklung und ein 3D-Drucker machte die Faszination und Grenzen des Verfahrens nicht nur im übertragenen Sinne greifbar.

Im Anschluss beantworteten die Dekane alle noch offenen Fragen. Zugleich luden sie die Schülerinnen und Schüler dazu ein, zum Schnuppertag am 16. April wiederzukommen. Dann besteht für alle Interessierten die Möglichkeit, selbst an Vorlesungen teilzunehmen und sich mit TH-Studierenden und Absolventen auszutauschen.

Gastredner aus Wissenschaft und Wirtschaft stellen am Tag die neuesten Erkenntnisse und aktuelle Themen aus dem Bereich der Additiven Fertigung vor. Durch die schichtweise Fertigung können hochkomplexe und integrale Bauteile generiert werden, welche so mit konventionellen Verfahren nur bedingt oder überhaupt nicht realisiert werden können. Was zunächst mit der Fertigung von Prototypen begann, bildet mittlerweile ein eigenständiges Fertigungsverfahren, mit dem inzwischen hochbeanspruchte Serienbauteile gefertigt werden.
Absolventenfeier (2019)
Absolventenfeier am 05. Juli 2019

50 Jahre Kunststofftechnik (2019)

Jubiläumsfeier 50 Jahre Kunststofftechnik an der TH Rosenheim

Rund 270 Gäste sind zur Jubiläumsfeier 50 Jahre Kunststofftechnik an die Technische Hochschule Rosenheim gekommen. Im Oktober 1969 waren die ersten Studierenden in dem damals neu konzipierten Studiengang gestartet.

„Rosenheim ist zu einem Mekka der Kunststofftechnik geworden“, sagte Hochschulpräsident Prof. Dr. Heinrich Köster in seiner Begrüßungsrede. Er freute sich, dass nicht nur gut zwei Dutzend ehemalige Studierende der ersten Kohorte zur Festveranstaltung kamen, sondern mit Prof. Dr. Karl Reichel auch einer der damaligen Gründungsprofessoren des Studiengangs.

In all den Jahren hat die TH Rosenheim etwa 2.000 Nachwuchskräfte für die Bereiche Produktentwicklung, Kunststoffverarbeitung und Materialentwicklung hervorgebracht. Viele von ihnen kamen nun zur Jubiläumsfeier. „Absolventen aus der Kunststofftechnik wurden regelrecht von der Industrie aufgesaugt“, erinnerte sich Prof. Dr. Köster. Mit dem geplanten Zentrum für biobasierte Materialien gehe nun eine Entwicklung weiter, „die hier vor 50 Jahren als kleine Pflanze gesetzt wurde“.

„Die Rosenheimer Kunststofftechnik ist heute regional wie international ein ingenieurtechnisches Juwel“, lobte Prof. Dr. Rudolf Stauber, Geschäftsführer des Fraunhofer IWKS. Intensiv werden an der TH Rosenheim innovative Forschungsschwerpunkte wie Leichtbau oder Kunststoffrecycling gesetzt. Die Gründungsväter vor 50 Jahren haben mit Weitblick gehandelt, bemerkte Prof. Dr. Stauber. Gehört doch die Kunststofftechnik mittlerweile zu einer der weltweiten Schlüsselindustrien.

Dr. Karl-Heinz Bourdon, Senior Vice President bei der Kraussmaffei Technologies GmbH, appellierte in seinem Vortrag sowohl an die anwesenden Vertreter der Kunststoffindustrie als auch aus der Wissenschaft und Lehre. Zum einen solle die TH Rosenheim ihre Wege konsequent weiter verfolgen, zum anderen wies er darauf hin, dass die Rückführquoten gerade für Verpackungen erhöht werden müssen. „Die Industrie hat bereits heute gute Technologien, daraus wieder gute Produkte zu machen“, erklärte Dr. Bordon.
Elektro- und Informationstechnik feiert 25-Jähriges Bestehen

„Wir haben in den letzten 25 Jahren genau das realisieren können, was sich die Industriepartner von unseren Absolventen wünschen“ sagt der Studiendekan Prof. Popp, „wichtig ist eine breite Grundlagenausbildung und Vermittlung von Methodenwissen, so dass sie sich selbst in neue Themengebiete zügig einarbeiten können. Zudem bekommen sie ein technisches Systemverständnis, das anderen Spezialisten oft fehlt. Besonders bei der Hardwarerealisierung zeigt sich dieser Vorteil im Vergleich mit anderen.“

Diese grundlegenden Fähigkeiten, die weltweit am deutschen Elektroingenieur geschätzt sind, werden im grundständigen Bachelor-Studiengang vermittelt. Im internationalen, englischsprachigen Master-Studiengang, der 2002 als einer der ersten überhaupt in Deutschland angeboten wurde, erfolgt eine Vertiefung bzw. Vermittlung von Spezialwissen.

Für Studierende ist die Elektro- und Informationstechnik wie jeher herausfordernd, aber durch die gute Betreuungsrelation und das familiäre Klima in Rosenheim erfolgreich zu bewältigen. Dann winkt ein gutes Arbeitsplatzangebot in Zukunftstechnologien. Damals wie heute ist der Rede von neuen gesellschaftlichen Herausforderungen, die Welt ist stetig im Umbruch. Als Elektroingenieur verbindet man allerdings mit dem Begriff Wandel nicht Unsicherheit sondern Gestaltungsmöglichkeit.
Neues Stipendium der Stahlgruber Gesellschafter-Stiftung für Studierende der TH Rosenheim

Mit einem Stipendium und einer finanziellen Förderung für studentische Projektarbeiten unterstützt die Stahlgruber Gesellschafter-Stiftung künftig die Technische Hochschule Rosenheim.

Der Dozent wird mit der Honorarprofessur für seine wissenschaftlichen Leistungen im Bereich der Kommunikationstechnik und für sein langjähriges Engagement in der Lehre der Hochschule ausgezeichnet. Prof. Dr. h.c. Heinrich Köster, Präsident der TH Rosenheim, überreichte die Ernennungsurkunde und wies unter anderem auf die Pflichten hin, die mit einer Honorarprofessur einhergehen: eine enge Verbindung mit der TH Rosenheim pflegen, das Ansehen der Hochschule fördern und einen Beitrag zu den Lehrveranstaltungen leisten. „Ich bin überzeugt davon, dass dies für Sie, Dr. Leather ein Leichtes sein wird“, sagte Köster.

In ihrer Laudatio zeichneten Dr. Markus Stichler, Professor für Nachrichtenübertragung und Digitale Signalverarbeitung, und Dr. Martin Versen, Dekan der Fakultät für Ingenieurwissenschaften, Leathers beruflichen Werdegang nach und hoben sein großes fachliches Wissen hervor. Geboren 1967 in Southport in England, studierte und promovierte er an der Universität Liverpool in Elektrotechnik mit Spezialisierung Hochfrequenztechnik. Seine hervorragenden Fähigkeiten wurden bereits 1996 durch die Verleihung des Robert-Leggett-Preises der Fakultät für Ingenieurwesen der Universität Liverpool gewürdigt.

„Seine herausragenden Leistungen werden durch zahlreiche Veröffentlichungen und Patente unterstrichen. Durch diese fachliche Tiefe und seine Fähigkeit, sein Wissen leidenschaftlich in Lehrveranstaltungen weiterzugeben, wird Dr. Leather auch eine große Bereicherung für die Technische Hochschule Rosenheim und deren Studenten sein“, so Versen.

Der neue Professor dankte für seine Ernennung und nahm die Ehrung mit Freuden an. „Dieser herausragende und prestigeträchtige Titel wurde mir in Anerkennung nicht nur für einige Jahre im Dienst der Hochschule verliehen, sondern auch für meinen Beitrag zur Gesellschaft als beratender Ingenieur im In- und Ausland. Ich werde mein Bestes geben und die Hochschule und ihre Studenten auch in Zukunft nicht enttäuschen“, sagte Leather.
<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Ersterprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barthelmes</td>
<td>Tobias</td>
<td>Prof. Popp</td>
<td>Prof. Seliger</td>
<td>Entwurf, Inbetriebnahme und Charakterisierung von dual-band GNS-S-Frontends</td>
</tr>
<tr>
<td>Sargant</td>
<td>Marcel</td>
<td>Prof. Stichler</td>
<td>Prof. Wagner</td>
<td>Entwicklung eines Messverfahrens zur Klassifizierung der Oberflächen-beschaffenheit auf der Basis von Deep Learning Modellen</td>
</tr>
<tr>
<td>Mateus</td>
<td>Jelson</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>Entwicklung eines UHF RFID Transponders zur Anwendung auf metallschen Oberflächen</td>
</tr>
<tr>
<td>Engelberg</td>
<td>Niklas</td>
<td>Prof. Perschl</td>
<td>Prof. Meierlohr</td>
<td>Erarbeitung eines Automatisierungskonzeptes für einen Depalettiungsprozess</td>
</tr>
<tr>
<td>Maier</td>
<td>Thomas</td>
<td>Prof. Perschl</td>
<td>Prof. Popp</td>
<td>Entwicklung und Validierung verschiedener Konzepte zur Präsenzerkennung sowie der Überprüfung des Tablettenfüllstandes von Kartuschen</td>
</tr>
<tr>
<td>Weinzierl</td>
<td>Simon</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Konzepterstellung für die Modernisierung des Prozessleitsystems einer Chemieanlage</td>
</tr>
<tr>
<td>Hirzi</td>
<td>Monji</td>
<td>Prof. Thurner</td>
<td>F. Beckmann</td>
<td>Integration der RFD868+ Telemetrie in ein autonom fliegendes Flugzeug</td>
</tr>
<tr>
<td>Taberthofer</td>
<td>Markus</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>Design eines Schaltverstärkers im Kurzwellenbereich</td>
</tr>
<tr>
<td>Nagl</td>
<td>Marinus</td>
<td>Prof. Popp</td>
<td>Prof. Mayr</td>
<td>Realisierungsmöglichkeiten eines Akkusystems für Scheinwerfer</td>
</tr>
<tr>
<td>Gämmerler</td>
<td>Philipp</td>
<td>Prof. Stichler</td>
<td>Prof. Perschl</td>
<td>Konzeptionierung und Entwicklung eines Platinen-Testsystems beste-hend aus Hardwareadapters und Test-Software</td>
</tr>
<tr>
<td>Strasser</td>
<td>Andreas</td>
<td>Prof. Thurner</td>
<td>Prof. Mysiwetz</td>
<td>Der Entwurf, die techn. Realisierung und die Inbetriebnahme eines multifunktionalen Ansteueradapters für die Produktion und den Test von Radar-Submodulen</td>
</tr>
<tr>
<td>Kojer</td>
<td>Alexander</td>
<td>Prof. Mysiwetz</td>
<td>Prof. Thurner</td>
<td>Entwicklung und Inbetriebnahme einer automatisierten Test- und Prüfeinrichtung für Hardwareassemblies</td>
</tr>
<tr>
<td>Schmid</td>
<td>Johannes</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>Einflüsse von Verarbeitungsschwankungen auf die Eigenschaften von Steckverbindern</td>
</tr>
<tr>
<td>Weingartner</td>
<td>Markus</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Konzeptionierung einer SPS-basierten Brennersteue- rung und hardware-technische Umsetzung der erforderlichen Sicherheitfunktionen</td>
</tr>
<tr>
<td>Rund</td>
<td>Daniel</td>
<td>P. Crämer</td>
<td>Prof. Krämer</td>
<td>Roboterstandardisierung in der Verpackungsindustrie</td>
</tr>
<tr>
<td>Heckel</td>
<td>Robert</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Entwicklung einer allgemeinen Schnittstelle zwischen esmo Steuerung und Kunden Daten System</td>
</tr>
<tr>
<td>Dengg</td>
<td>Maximili-an</td>
<td>Prof. Krämer</td>
<td>P. Crämer</td>
<td>Entwicklung eines Software Grundgerüstes für CNC-Anlagen auf Basis einer 1500 T-CPU mit TIA Portal und WinCC Professional für die Visualisierung</td>
</tr>
<tr>
<td>Wörndl</td>
<td>Michael</td>
<td>Prof. Thurner</td>
<td>Prof. Mayr</td>
<td>Weiterentwicklung einer Messtechnik zur frequenzabhängigen Bestimmung der elektromagnetischen Leis-tungsflosstüchte im ISM-Band</td>
</tr>
<tr>
<td>Scheuerer</td>
<td>Christoph</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Analyse von Sensoren zur kontaktlosen Hindemiserkennung bei STIHL Mährobotern</td>
</tr>
<tr>
<td>Sellmann</td>
<td>Tobias</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Konzeptentwicklung einer microcontrollergesteuerten SP5 gekoppelten Netzfreischaltung</td>
</tr>
<tr>
<td>Schirmann</td>
<td>Jaqueline</td>
<td>Prof. Schmidt</td>
<td>Prof. Zentgraf</td>
<td>Konzeptionierung und Entwicklung eines (konturbasierten) Scanmat-ching Verfahrens</td>
</tr>
<tr>
<td>Noll</td>
<td>Anton</td>
<td>Prof. Mayr</td>
<td>Prof. Thurner</td>
<td>Entwicklung der Hardware für in M-Bus-Interface</td>
</tr>
<tr>
<td>Heizer</td>
<td>Martin</td>
<td>Prof. Mysiwetz</td>
<td>Prof. Mayr</td>
<td>Verbesserte Parameterschätzung und MISRA-C Software für einen 20kW BLDC-Elektromotoren-Prüfstand</td>
</tr>
<tr>
<td>Bauer</td>
<td>Korbinian</td>
<td>Prof. Tilly</td>
<td>Prof. Wagner</td>
<td>Method for automated synthesesing of training data for object detection in an industrial environment</td>
</tr>
<tr>
<td>Falthauser</td>
<td>Georg</td>
<td>Prof. Seliger</td>
<td>E. Dechant</td>
<td>Untersuchung leitungsgführter Störungen eines Inverters in der Umgebung eines Leistungselektronikprüfstands</td>
</tr>
<tr>
<td>Pleimayer</td>
<td>Florian</td>
<td>Prof. Stichler</td>
<td>Prof. Stahl</td>
<td>Testumgebung für Wireless Reconnection Tests</td>
</tr>
<tr>
<td>Bleicher</td>
<td>Benedikt</td>
<td>Prof. Krämer</td>
<td>Prof. Thurner</td>
<td>„Automatisierung einer Prüfstandskalibrierung“</td>
</tr>
<tr>
<td>Janus</td>
<td>Jakob</td>
<td>Prof. Stichler</td>
<td>Prof. Popp</td>
<td>Das Wiegan-Protokoll; Die Entwicklung eines Datenloggers und ein Vergleich mit OSDP</td>
</tr>
<tr>
<td>Schwoedler</td>
<td>Jonas</td>
<td>Prof. Stichler</td>
<td>Prof. Popp</td>
<td>Programmierung und Validierung eines Software-Tools zur Erstellung ei- ner simulierten, individuellen Ul-Elektron-Komponente eines Kochfelds am Rechner</td>
</tr>
<tr>
<td>Seehuber</td>
<td>Stephan</td>
<td>Prof. Versen</td>
<td>P. Crämer</td>
<td>Beckhoff Ether CAT Briefmarke als Gateway für die Anbindung einer Arduino basierten Luftqualitäts-Messung an eine Beckhoff SPS</td>
</tr>
<tr>
<td>Nachname</td>
<td>Vorname</td>
<td>Erstprüfer</td>
<td>Zweitprüfer</td>
<td>Thema</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Schenk</td>
<td>Alexander</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>IP Core erstellen, der als AXI Slave funktioniert und AXI Protokoll in MM64 Protokoll übersetzt. MM64 ist ein Protokoll, entwickelt von PRO DESIGN Electronic GmbH. Dieses Design wird dazu hergenommen AXI Master auf ihre funktionsweise zu testen.</td>
</tr>
<tr>
<td>Weiß</td>
<td>Manuel</td>
<td>Prof. Stahl</td>
<td>Prof. Krödel</td>
<td>Protokolltechnische Implementierung von KNX IoT</td>
</tr>
</tbody>
</table>

2019

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erath</td>
<td>Maximilian</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>Unterdrückung höherer Moden auf koaxialen Leitungen</td>
</tr>
<tr>
<td>Lunghamer</td>
<td>Stefan</td>
<td>Prof. Schittenhelm</td>
<td>Prof. Hagl</td>
<td>Modellierung und Schätzung periodischer Störgrößen</td>
</tr>
<tr>
<td>Heppel</td>
<td>Michael</td>
<td>P. Crämer</td>
<td>Prof. Perschl</td>
<td>Erarbeitung eines Hardwarekonzeptes für die karton verarbeitenden Maschinen Variocart und Variocol der Krones AG</td>
</tr>
<tr>
<td>Oswald</td>
<td>Christoph</td>
<td>Prof. Myśliwetz</td>
<td>Prof. Schell</td>
<td>Verbesserung der Wirkungsraubestimmung für einen 20kW-Elektromotoren-Prüfstand</td>
</tr>
<tr>
<td>Hinterleitner</td>
<td>Maximilian</td>
<td>Prof. Myśliwetz</td>
<td>Prof. Schell</td>
<td>Integration eines Embedded CAN-Knoen (Remote Steuergerät) für mehrere Aktuatoren und Sensoren eines Segelflugzeug-Hilfsantriebs in das Hauptsteuergerät</td>
</tr>
<tr>
<td>Berghammer</td>
<td>Michael</td>
<td>Prof. Versen</td>
<td>Prof. Stichler</td>
<td>Erstellung einer Simulationsumgebung für die Entwicklung von Signal-optimierungen</td>
</tr>
<tr>
<td>Eiser</td>
<td>Stefan Alexander</td>
<td>Prof. Thurner</td>
<td>Prof. Mayr</td>
<td>Untersuchung der Realisierbarkeit eines Messplatzes für Mobilfunkantennen zur Erfassung und Lokalisierung von Feldstärken</td>
</tr>
<tr>
<td>Franz</td>
<td>Michael</td>
<td>Prof. Stichler</td>
<td>Prof. Stahl</td>
<td>Entwicklung einer 360° Fahrzeug Top-Down Surround View</td>
</tr>
<tr>
<td>Spagl</td>
<td>Bernhard</td>
<td>Prof. Krämer</td>
<td>Prof. Versen</td>
<td>Untersuchung der technischen Realisierbarkeit eines Qualitätsprüdikti- onssystems für den Prozess Hubzündschweißen</td>
</tr>
<tr>
<td>Lauter</td>
<td>Florian</td>
<td>Prof. Mayr</td>
<td>Prof. Thurner</td>
<td>Optimierung eines magnetisch-induktiven Durchflusssensors</td>
</tr>
<tr>
<td>Bauernschmid</td>
<td>Wolfgang</td>
<td>Prof. Thurner</td>
<td>Prof. Mayr</td>
<td>Untersuchungsreihe an Mobilfunkantennen zur Erhöhung der Genauig- keit in der Konzeptphase</td>
</tr>
<tr>
<td>Sigrüner</td>
<td>Matthias</td>
<td>Peter Crämer</td>
<td>Prof. Perschl</td>
<td>Konzepentwicklung und Realisierung an zwei Pilot-anlagen für die zentrale Erfassung und Langzeitarchivierung von Prozessdaten durch Vernetzung von vorhandenen speicherprogrammierbaren Steuerungen</td>
</tr>
<tr>
<td>Gallinger</td>
<td>Simon</td>
<td>Prof. Thurner</td>
<td>Prof. Stichler</td>
<td>Entwicklung und Validierung eines elektronischen Modells zur Berech- nung fluider Systemgrößen einer Schwingkolbenpumpe</td>
</tr>
<tr>
<td>Freiberger</td>
<td>Michael</td>
<td>Prof. Thurner</td>
<td>Prof. Popp</td>
<td>Untersuchung der Richtcharakteristiken bei Einzelstrahlern zur Re- duktion ungewollter Abstrahlverhältnisse in Antennen-Arrays durch systematische Manipulation</td>
</tr>
<tr>
<td>Nkeng Ntouk</td>
<td>Rose</td>
<td>Laurette</td>
<td>Prof. Schittenhelm</td>
<td>Überarbeitung von Parkikumsversuchen in der Regelungstechnik mit Matlab</td>
</tr>
<tr>
<td>Hinterstocker</td>
<td>Christian</td>
<td>Prof. Stichler</td>
<td>Prof. Thurner</td>
<td>Design und Implementierung eines GNSS Empfänger-Testbeds zur Demonstration von Störangriffen auf GNSS Signale</td>
</tr>
<tr>
<td>Zeliner</td>
<td>Jakob</td>
<td>Prof. Thurner</td>
<td>Prof. Schell</td>
<td>Implementation and Synthesy of the Control Algorithms of a Digital Low Dropout Regulator</td>
</tr>
<tr>
<td>Semmler</td>
<td>Florian</td>
<td>Prof. Zentgraf</td>
<td>Prof. Schitten- helm</td>
<td>Erweiterung des regelungstechnischen Lerntools "pzMove" um die diskrete Modellierung und Regelung</td>
</tr>
<tr>
<td>Huber</td>
<td>Lukas</td>
<td>Prof. Mayr</td>
<td>Prof. Perschl</td>
<td>Untersuchung zur Reproduzierbarkeit und Verbesserung der Espresso- Qualität in einem Kaffee-Vollautomaten zur Verwendung als Referenz-gerät</td>
</tr>
<tr>
<td>Mayer</td>
<td>Vincens</td>
<td>Prof. Seliger</td>
<td>Herr Dechant</td>
<td>Entwicklung eines einphasigen 3-Level NPC Wechselrichters mit Galli- umnitrid Bauelementen</td>
</tr>
<tr>
<td>Arnold</td>
<td>Andreas</td>
<td>Prof. Perschl</td>
<td>Peter Crämer</td>
<td>Data Collection of Machine Data for Predictive Maintenance</td>
</tr>
<tr>
<td>Gottenöf</td>
<td>Andreas</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Entwicklung und Evaluierung eines standardisierten Produktwechselprozesses in Verpackungsmaschinen</td>
</tr>
<tr>
<td>Paule</td>
<td>Fabian</td>
<td>Prof. Stahl</td>
<td>Prof. Versen</td>
<td>Evaluierung und Umsetzung von Lösungen für ein LPWAN Erweiterungsboard</td>
</tr>
<tr>
<td>Bauer</td>
<td>Stefan</td>
<td>Prof. Schell</td>
<td>Prof. Stichler</td>
<td>Erstellung einer Auswerte- software von Mess-protokollen für Mobilfunkbasistationen</td>
</tr>
</tbody>
</table>
Kunststofftechnik

Abschlussarbeiten

2020

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzheu</td>
<td>Stephan</td>
<td>Prof. Schroeter</td>
<td>Prof. Muscat</td>
<td>Untersuchungen an Holzwerkstoffplatten bezüglich der Ausgleichsfeuchte und Quellverhalten bei schwankender Umgebungsfeuchte</td>
</tr>
<tr>
<td>Schilder</td>
<td>Max</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Messmethode zur "automatisierten" Auswertung der Oberflächen-topographien von BOPP-C Folien eruieren</td>
</tr>
<tr>
<td>Hansmeier</td>
<td>Sophie</td>
<td>Prof. Schroeter</td>
<td>Prof. Krommes</td>
<td>Untersuchung der Kreislauffähigkeit von kunststoffbeschichteten Trennpapieren</td>
</tr>
<tr>
<td>Maier</td>
<td>Amadeus</td>
<td>Prof. Schroeter</td>
<td>Prof. Karlinger</td>
<td>Untersuchung der Herkunft von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) in thermoplastischen Elastomeren (TPE)</td>
</tr>
<tr>
<td>Gratzi</td>
<td>Marius</td>
<td>Prof. Karlinger</td>
<td>Prof. Schemme</td>
<td>Untersuchungen zur Direktverarbeitung von Schnittglas im Spritzgießverfahren</td>
</tr>
<tr>
<td>Bier</td>
<td>Tobias</td>
<td>Prof. Karlinger</td>
<td>Prof. Schemme</td>
<td>Evaluierung von Verfahren zur Werkzeugreinigung und deren Automatisierbarkeit</td>
</tr>
<tr>
<td>Zellner</td>
<td>Timo</td>
<td>Prof. Schemme</td>
<td>Prof. Karlinger</td>
<td>Eigenschaftsveränderung von LFI-Bauteilen durch alternative Faserwerkstoffe</td>
</tr>
<tr>
<td>Heilmann</td>
<td>Christian</td>
<td>Prof. Karlinger</td>
<td>Prof. Schiemme</td>
<td>Einflüsse des Spritzgießprozesses auf die elektrischen Eigenschaften an einem Hochfrequenzstecker</td>
</tr>
<tr>
<td>Pasch</td>
<td>Bernhard</td>
<td>Prof. Brinkmann</td>
<td>Prof. Schroeter</td>
<td>Ermittlung der Abminderungsfaktoren für Bindenahfestigkeiten an repräsentativen verstärkten Thermoplasten</td>
</tr>
<tr>
<td>Buhlmeier</td>
<td>Florian</td>
<td>Prof. Karlinger</td>
<td>S. Puntigam</td>
<td>Untersuchung der Partikel bei der Spritzgussproduktion im Reinraum</td>
</tr>
<tr>
<td>Paufler</td>
<td>Nico</td>
<td>Prof. Schroeter</td>
<td>Prof. Schemme</td>
<td>Untersuchung der Einflussnahme eines Flammschutzmittels auf die Verarbeitungs- und Anwendungseigenschaften in einer CFK-Komponente für Anwendungen im Luftfahrtbereich</td>
</tr>
<tr>
<td>Hipetinger</td>
<td>Richard</td>
<td>Prof. Schroeter</td>
<td>Prof. Muscat</td>
<td>Untersuchung der Einflüsse konstruktiver Möglichkeiten von Kunststoff-Gallengang-Stents</td>
</tr>
<tr>
<td>Frankenberg</td>
<td>Michael</td>
<td>Prof. Karlinger</td>
<td>Prof. Michanicki</td>
<td>Vergleich der mechanischen Belastbarkeit von naturfaserverstärktem Polypropylen</td>
</tr>
<tr>
<td>Ginzel</td>
<td>Maximilian</td>
<td>Prof. Karlinger</td>
<td>Prof. Schiemme</td>
<td>Optimierung von Luftauswerfern für Press- und RTM-Werkzeuge zur Duroplastverarbeitung</td>
</tr>
<tr>
<td>Zenz</td>
<td>Vitus</td>
<td>Prof. Strübbe</td>
<td>Prof. Muscat</td>
<td>Equipment development for a novel process called "High pressure reactive extrusion of lignocellulosic biomass"</td>
</tr>
<tr>
<td>Steinbacher</td>
<td>Helene</td>
<td>Prof. Müller</td>
<td>Prof. Schemme</td>
<td>Untersuchung von PLGA und PLL basierten Neuro-spinal Scaffolds mittels materialographischer Präparation und optischer Auswertung unter Berücksichtigung des medizinischen Anwendungsgebietes.</td>
</tr>
<tr>
<td>Madi</td>
<td>Alexander</td>
<td>Prof. Schroeter</td>
<td>Prof. Wallner</td>
<td>Integration einer automatisierten Probenzuführung in einen bereits bestehenden Prüfungsablauf</td>
</tr>
<tr>
<td>Maier</td>
<td>Simon</td>
<td>Prof. Brinkmann</td>
<td>Prof. Strübbe</td>
<td>Untersuchung der Lasertransmission von spritzgegossenen Kunststoffbauteilen aus PBT mit varierten Prozessparametern</td>
</tr>
<tr>
<td>Meier</td>
<td>Sebastian</td>
<td>Prof. Brinkmann</td>
<td>Prof. Strübbe</td>
<td>Untersuchung der Bindenahfestigkeiten von Kunststoffen unter Einfluss erhöhter Umgebungstemperaturen und Zugbelastung</td>
</tr>
<tr>
<td>Fastner</td>
<td>Sophie</td>
<td>Prof. Karlinger</td>
<td>Prof. Schemme</td>
<td>Optimierung der Rüstzeiten von Spritzgusswerkzeugen</td>
</tr>
<tr>
<td>Grill</td>
<td>Daniel</td>
<td>Prof. Brinkmann</td>
<td>Prof. Riß</td>
<td>Untersuchung geeigneter Gussverfahren zur Herstellung individualisierter Silikonimplantate</td>
</tr>
<tr>
<td>Nachname</td>
<td>Vorname</td>
<td>Erstprüfer</td>
<td>Zweitprüfer</td>
<td>Thema</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Keller</td>
<td>Michael</td>
<td>Prof. Karlinger</td>
<td>Prof. Radlik</td>
<td>Entwicklung eines Complounds für ein Mikrowellenschweißverfahren</td>
</tr>
<tr>
<td>Bippes</td>
<td>Sophie</td>
<td>Prof. Versen</td>
<td>Prof. Karlinger</td>
<td>Entwicklung eines sauerstoffreduzierten Füllprozesses von Infusionsbeuteln</td>
</tr>
<tr>
<td>Weber</td>
<td>Alexander</td>
<td>Prof. Schemme</td>
<td>Prof. Schinagl</td>
<td>Entwicklung einer ringförmigen CFK-Struktur</td>
</tr>
<tr>
<td>Alberti</td>
<td>Fabian</td>
<td>Prof. Strübbe</td>
<td>Prof. Muscat</td>
<td>Untersuchung des Einflusses des Molekulargewichts auf die mechanischen Eigenschaften von Polyethyl und Polypropylen</td>
</tr>
<tr>
<td>Tannenberg</td>
<td>Rafael</td>
<td>Prof. Schemme</td>
<td>Prof. Schinagl</td>
<td>Anwendung der Strukturberechnungsmethoden für eine Carbon-Motoryacht</td>
</tr>
<tr>
<td>Pscheidl</td>
<td>Christian</td>
<td>Prof. Strübbe</td>
<td>Prof. Muscat</td>
<td>Bestimmung von Einflussfaktoren/Einflussparametern für die Haftung zwischen PUR-Halburschaumsystem und Dispersionsklebstoff im Kaschierprozess*</td>
</tr>
<tr>
<td>Schoberer</td>
<td>Jutta</td>
<td>Prof. Schemme</td>
<td>Prof. Karlinger</td>
<td>Betrachtung des Recycling und der Nachhaltigkeit von Kunststoffen im Automobilbau und praktische Erprobung an einem Interieur-Spritzgussbauteil</td>
</tr>
<tr>
<td>Gmeiner</td>
<td>Tobias</td>
<td>Prof. Brinkmann</td>
<td>Stefan Moser</td>
<td>Untersuchung zur Anwendbarkeit der statistischen Versuchsplanung in der Prozesssimulation zur Optimierung von Spritzguss-Bauteilen</td>
</tr>
<tr>
<td>Last</td>
<td>Verena</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Optimierung einer silikonumspritzten Kabelkonfektion</td>
</tr>
<tr>
<td>Berger</td>
<td>Sebastian</td>
<td>Prof. Strübbe</td>
<td>Prof. Muscat</td>
<td>Herstellung einer feinporen extrudierten Schaumfolie mittels phasikali-schen Schlamens als Alternative zum chemischen Verfahren und unter Variation von Material und Prozessparametern</td>
</tr>
<tr>
<td>Wittmann</td>
<td>Christian</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Untersuchung des Abbauverhaltens von Polyethylenentephtalat beim FDM-Druck im Vergleich zur Extrusion</td>
</tr>
<tr>
<td>Daser</td>
<td>Michael</td>
<td>Prof. Schemme</td>
<td>Wolfgang Raffelt</td>
<td>Entwicklung einer Prüfmethode zur Qualitätsbeurteilung eines pultrudierten Bewehrungsstabes</td>
</tr>
<tr>
<td>Deubzer</td>
<td>Alexander</td>
<td>Prof. Schroeter</td>
<td>Prof. Muscat</td>
<td>Schwindungsanalyse der diskontinuierlichen Organoblecherstellung im Folienimprägnierverfahren</td>
</tr>
<tr>
<td>Mathäser</td>
<td>Markus</td>
<td>Prof. Schroeter</td>
<td>Prof. Muscat</td>
<td>Konzeption, Aufbau und Validierung eines Versuchsaufbaus zur Charakterisierung von Kunststoffpulver für das selektive Laserinjektionsverfahren</td>
</tr>
<tr>
<td>Ecki</td>
<td>Stefan</td>
<td>Prof. Brinkmann</td>
<td>Prof. Schroeter</td>
<td>Entwicklung von funktionellen Elementen auf Gore Laminaten mittels 3D Druck und Ausblick auf massentaugliche Verfahren</td>
</tr>
<tr>
<td>Herz</td>
<td>Jonas</td>
<td>Prof. Muscat</td>
<td>Stefan Moser</td>
<td>Funktionsanalyse der Einflüsse verschiedener Additive auf das thermodynamische Verhalten von Schichtkörper</td>
</tr>
<tr>
<td>Lechl</td>
<td>Hans</td>
<td>Prof. Schroeter</td>
<td>Prof. Lazar</td>
<td>Charakterisierung ausgewählter Messmethoden zur Beurteilung von aufgebrachten Bahnschlagungen in Flachfolien</td>
</tr>
<tr>
<td>Burk</td>
<td>Alexander</td>
<td>Prof. Schroeter</td>
<td>Prof. Muscat</td>
<td>Suche neuer Anwendungsgebiete für Imprägnieranlagen mit anschließender Überprüfung auf Machbarkeit</td>
</tr>
<tr>
<td>Rinser</td>
<td>Stephan</td>
<td>Prof. Schroeter</td>
<td>Prof. Zscheile</td>
<td>Substitution von eingeführten Polypropylenfolien in Fußbodenlaminaten durch Follen mit gegebener Zusammensetzung aus biobasierten Kunststoffen</td>
</tr>
<tr>
<td>Eibl</td>
<td>Matthias</td>
<td>Prof. Brinkmann</td>
<td>Prof. Wagner</td>
<td>Analyse der Einsatzpotenziale in der Entwicklung von Kunststoffbauteilen durch Prototypenfertigungsverfahren mit 3D-gedruckten Werkzeugzeitsätzen</td>
</tr>
</tbody>
</table>
Maschinenbau
2020

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurz</td>
<td>Fabian</td>
<td>Prof. Lazar</td>
<td>Prof. Krämer</td>
<td>Optimierung der innerbetrieblichen Logistik eines Unternehmens mithilfe von Methoden des Qua-litätsmanagements</td>
</tr>
<tr>
<td>Bilec</td>
<td>Kahraman</td>
<td>Prof. Reuter</td>
<td>Prof. Wagner</td>
<td>Automatischer Wechsel der Schubstange inkl. Lagernahigkeit-Konzepterstellung und Herstellkostenabschätzung</td>
</tr>
<tr>
<td>Engelsberger</td>
<td>Xaver</td>
<td>Prof. Lazar</td>
<td>Prof. Reuter</td>
<td>Konstruktion der End of Line Prüfstation mit dem Schwerpunkt der Leiterplattenkontaktierung</td>
</tr>
<tr>
<td>Nguyen</td>
<td>Kwanh</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Entwicklung und Konstruktion eines Prüfstandes zur Überwachung von Wälzlagerschäden</td>
</tr>
<tr>
<td>Sagynor</td>
<td>Ermek</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Methodische Entwicklung eines Rollosystems für automobile Innenraumbeschattung mit Fokus auf Auszugsänge und Robustheit</td>
</tr>
<tr>
<td>Woldt</td>
<td>Thorben</td>
<td>Prof. Kuttr</td>
<td>Prof. Prasch</td>
<td>Systematische Analyse und Identifikation von Optimierungsmaßnahmen im gesamten Wertschöpfungsprozess</td>
</tr>
<tr>
<td>Regauer</td>
<td>Simon</td>
<td>Prof. Neumaier</td>
<td>Prof. Lazar</td>
<td>Bewertung der Veränderung von gebrauchten Getriebeölen mittels einem Oszillations-Reib-Verschleiß-Prüfverhalten und anderen Auswirkungen in der praktischen Anwendung</td>
</tr>
<tr>
<td>Hartmann</td>
<td>Jakob</td>
<td>Prof. Wagner</td>
<td>Prof. Neumaier</td>
<td>Trennende Schutzeinrichtung für ein gefahren-loses Arbeiten an einer Maschine</td>
</tr>
<tr>
<td>Yavuz</td>
<td>Emrullah</td>
<td>Prof. Hagl</td>
<td>Prof. Wagner</td>
<td>Systematische Konzeptionierung einer Energieeinheit für einen Fassadenprüfstand inkl. der dazugehörigen Mess-, Steuerungs- und Regelungstechnik</td>
</tr>
<tr>
<td>Bresselau von Bressensdorf</td>
<td>Lilian Roseline</td>
<td>Prof. Versen</td>
<td>P. Crämer</td>
<td>Automatisiertes Kohlenstoffdioxidmesssystem an einem Arduino-gateway mit einer Beckhoff SPS</td>
</tr>
<tr>
<td>Gansmaier</td>
<td>Josef</td>
<td>Prof. Neumaier</td>
<td>Prof. Lazar</td>
<td>Entwicklung eines Justermoduls für Repeater</td>
</tr>
<tr>
<td>Bauch</td>
<td>Simon</td>
<td>Prof. Kramer</td>
<td>W. Rottmayr</td>
<td>Materialflussoptimierung unter Berücksichtigung effizienter Flächenausnutzung des Montageprozesses</td>
</tr>
<tr>
<td>Wilhelm</td>
<td>Michael</td>
<td>Prof. Reuter</td>
<td>Prof. Meierlohr</td>
<td>trennende Schutzeinrichtung für ein gefahren-loses Arbeiten an einer Maschine</td>
</tr>
<tr>
<td>Maidl</td>
<td>Tobias</td>
<td>Prof. Wagner</td>
<td>Prof. Brinkmann</td>
<td>Einfluss der Schutzgasströmung auf die positionabhängige Ausprägung von Feststellen beim pulverbettbasierten Laserstrahlschmelzen</td>
</tr>
<tr>
<td>Steinegger</td>
<td>Marianne</td>
<td>Prof. Meierlohr</td>
<td>Prof. Reuter</td>
<td>Konzeptentwurf: Automatisiertes Aufbringen und Aufschmelzen von Zinn auf Litzen</td>
</tr>
<tr>
<td>Hunklinger</td>
<td>Marco Christian</td>
<td>Prof. Lazar</td>
<td>Prof. Meierlohr</td>
<td>Überarbeitung einer Vorrichtung zur Antennen-befestigung für die Anwendung in Messkammern</td>
</tr>
<tr>
<td>Baumann</td>
<td>Michael</td>
<td>Prof. Bucker</td>
<td>Prof. Buttering</td>
<td>Entwicklung von Betriebs- und Regelstrategien für die Erhöhung der Wirtschaftlichkeit von PV-Anlagen durch den Einsatz von Speichern</td>
</tr>
<tr>
<td>Liebscher</td>
<td>Johannes</td>
<td>Prof. Bucker</td>
<td>Prof. Buttering</td>
<td>Optimierung des Betriebs von BHKW-Anlagen durch neue Einsatzstrategien</td>
</tr>
<tr>
<td>Ancia</td>
<td>Yusuf</td>
<td>Prof. Wagner</td>
<td>Prof. Neumaier</td>
<td>Planung und Vorbereitung von mechatronischen Beschlagsprüfungen für Schlösser, Schließ-zylinder und Druckergarnituren für einbruchmennende Baulemente</td>
</tr>
<tr>
<td>Weingartner</td>
<td>Thomas</td>
<td>Prof. Lazar</td>
<td>Prof. Reuter</td>
<td>Auslegung einer Bolzenanbindung ohne zu-sätzliches Stützelement für pyrotechnische Setengasgeneratoren</td>
</tr>
<tr>
<td>Hell</td>
<td>Christian</td>
<td>Prof. Riß</td>
<td>G. Wimmer</td>
<td>Untersuchung zur Verzugsbeherrschung bei Wire Arc Additive Manufacturing Bauteilen</td>
</tr>
<tr>
<td>Eberl</td>
<td>Tobias</td>
<td>Prof. Buttering</td>
<td>Prof. Wagner</td>
<td>Vergleich unterschiedlicher Strahlungsheiztechnologien zur Anwendung im Haushalts-backofen</td>
</tr>
<tr>
<td>Aigner</td>
<td>Florian</td>
<td>Prof. Schell</td>
<td>Prof. Brinkmann</td>
<td>Untersuchung und Entwicklung funktionaler Inserts in carbon SMC Komponenten</td>
</tr>
<tr>
<td>Hell</td>
<td>Sebastian</td>
<td>Prof. Bucker</td>
<td>Prof. Buttering</td>
<td>Wirtschaftlichkeitsbetrachtung von Post-EEG-Betreibermodellen für PV-Anlagen</td>
</tr>
<tr>
<td>Krammer</td>
<td>Benedikt</td>
<td>Prof. Neumaier</td>
<td>Prof. Brinkmann</td>
<td>Entwicklung eines Getriebes zur Verstellung des Downtilts eines 8 TRx-Highband-Arrays innerhalb einer stationären Multiband-Basisstations-antenne</td>
</tr>
<tr>
<td>Spagl</td>
<td>Michael</td>
<td>Prof. Lazar</td>
<td>Prof. Neumaier</td>
<td>Messssystemanalyse eines optisch getrackten Lasertriangulations sensors</td>
</tr>
<tr>
<td>Goller</td>
<td>Max Georg</td>
<td>Prof. Neumaier</td>
<td>Prof. Lazar</td>
<td>Abgleichende Untersuchungen zur Anwendung der Normen DIN EN ISO 20567-1 und SAE J400 auf dem IABG-Steinschlagsimulator</td>
</tr>
<tr>
<td>Name</td>
<td>Vorname</td>
<td>Prof.</td>
<td>Zweitprof.</td>
<td>Projekt</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Basdas Mehrmet</td>
<td>Prof. Zentgraf</td>
<td>P. Viehhauser</td>
<td>Analyse und Simulation eines geregelten Feder-Masse-Schwingers</td>
<td></td>
</tr>
<tr>
<td>Baumgarten Johannes</td>
<td>Prof. Zentgraf</td>
<td>Prof. Reuter</td>
<td>Bestimmen der Polaren von Gleitschirmen in bewegter Luftmasse während des Ruges</td>
<td></td>
</tr>
<tr>
<td>Schneider Tobias Jakob</td>
<td>Prof. Lazar</td>
<td>S. Moser</td>
<td>Untersuchungen und Optimierung der Kalibrierung von AU-Abgasmessgeräten</td>
<td></td>
</tr>
<tr>
<td>Rautter Felix</td>
<td>Prof. Lazar</td>
<td>Prof. Bucker</td>
<td>Einstellung der Espressoqualität bei Kaffeemaschinenautomaten durch technische Übersetzung sensorischer Attribute in Brühprozessparameter</td>
<td></td>
</tr>
<tr>
<td>Wildenburg Geronimo</td>
<td>Prof. Reuter</td>
<td>Prof. King</td>
<td>Entwicklung und Konstruktion einer Klimatisierungs-einheit für Prüfstände</td>
<td></td>
</tr>
<tr>
<td>Hartl Florian</td>
<td>Prof. Reuter</td>
<td>Prof. Wagner</td>
<td>Konstruieren eines automatischen Greiferwechselmagazins für ein Gruppier- system in der Palettiertechnik</td>
<td></td>
</tr>
<tr>
<td>Hutter Martin</td>
<td>Prof. Zentgraf</td>
<td>Prof. King</td>
<td>Positions- und Lagebestimmung eines Quadrocopters</td>
<td></td>
</tr>
<tr>
<td>Reiter Andreas</td>
<td>Prof. Zentgraf</td>
<td>Prof. King</td>
<td>Aufbau eines Versuchsstandes zur Temperaturregelung einer Substratbahn</td>
<td></td>
</tr>
<tr>
<td>Baumgarten Johannes</td>
<td>Prof. Lazar</td>
<td>Prof. Reuter</td>
<td>Funktionsanalyse der passiven Komponenten für E-Mobilität</td>
<td></td>
</tr>
<tr>
<td>Post Lukas</td>
<td>Prof. Prasch</td>
<td>Prof. Kutler</td>
<td>Kostenoptimierung des ROSY-Mod Werfers (Einzelschussvariant des ROSY Werfers für Landfahrzeuge) Änderungen bzgl. Konstruktion, Fertigung, Einkauf etc.</td>
<td></td>
</tr>
<tr>
<td>Schelling Felix</td>
<td>Prof. Stichler</td>
<td>Prof. King</td>
<td>Entwicklung eines Reinforcement Learning Models zur Berechnung von Bewegungsparametern eines Deltaroboters</td>
<td></td>
</tr>
<tr>
<td>Nerbl Kevin</td>
<td>Prof. Riß</td>
<td>Prof. Brinkmann</td>
<td>Additive Fertigung - Machbarkeitsuntersuchung zur Funktionssicherheit bei Isolierkörper- und Gehäuse-bauteilen von Rundsteckverbindern</td>
<td></td>
</tr>
<tr>
<td>Liszewski Dominik</td>
<td>Prof. Versen</td>
<td>Prof. Winter</td>
<td>Entwicklung eines Qualifikationsstests von Koch-geschirr durch Induktivität und Widerstand</td>
<td></td>
</tr>
<tr>
<td>Kagerer Dominik</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Analyse und Konstruktion eines Tuopengreifer-Teststandes zum Prüfen des Greiferhaltens an Behältern</td>
<td></td>
</tr>
<tr>
<td>Reiser Amelie Regina</td>
<td>Prof. Brinkmann</td>
<td>Prof. Riß</td>
<td>Additive Manufacturing - Etablierung der PEEK-Drucktechnik als Standard-Prozess durch die Erarbeitung von Maschinenparametern und Einstellungsempfehlungen für den Kumovis-Drucker</td>
<td></td>
</tr>
<tr>
<td>Niederschweiberer Tobias</td>
<td>Prof. Reuter</td>
<td>Prof. Wagner</td>
<td>Entwicklung und Auswahl eines Konzepts für einen Hybrid-Gasgenerator mit Schneckwellenprinzip</td>
<td></td>
</tr>
<tr>
<td>Jelitto Kevin</td>
<td>Prof. Meierlohr</td>
<td>Prof. Reuter</td>
<td>Entwicklung und Konstruktion einer automatisierten Verdrahtungsanlage für elektronische Vorschaltgäräte</td>
<td></td>
</tr>
<tr>
<td>Bauer Sebastian</td>
<td>Prof. Riß</td>
<td>Prof. Lazar</td>
<td>Konzeptionierung eines Labsors zur Implementierung der additiven Fertigung an der TH Rosenheim</td>
<td></td>
</tr>
<tr>
<td>Heinz Maximilian</td>
<td>Prof. Müller</td>
<td>Prof. Riß</td>
<td>Analyse eines additiven Herstellungsprozesses von Keramikbauteilen auf Wachsbindersystem</td>
<td></td>
</tr>
<tr>
<td>Oswald Benedikt</td>
<td>Prof. Reuter</td>
<td>Prof. Meierlohr</td>
<td>Entwicklung eines Beladesystems zur zeitoptimierten Magazinbestückung des Kartonmagazins einer Verpackungsmaschine</td>
<td></td>
</tr>
<tr>
<td>Mayerbürcher Franz</td>
<td>Prof. Neumaier</td>
<td>Prof. Fischer F.</td>
<td>Konzeptionierung eines A2fütterscheintauglichen elektrischen Mittelklassemotorrades</td>
<td></td>
</tr>
<tr>
<td>Schütz Michael</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Produktkostenoptimierung einer bestehenden Verteilbahn bis 1 t durch Erarbeiten eines alternativen Konzepts</td>
<td></td>
</tr>
<tr>
<td>Stockenreiter Brigitte</td>
<td>Prof. Buttinger</td>
<td>Prof. Schäfe</td>
<td>Systematische Analyse und Auslegung des Unterdrucksystems einer Sammelpackmaschine</td>
<td></td>
</tr>
<tr>
<td>Lenz Florian</td>
<td>Prof. Bucker</td>
<td>R. Wiener</td>
<td>Pumpenstromreduzierungs-potential durch die Optimierung von Ventilstellungen an Wärmeüber-gabestationen in Fernwärme-system</td>
<td></td>
</tr>
<tr>
<td>Loider Andreas</td>
<td>Prof. Neumaier</td>
<td>Prof. Reuter</td>
<td>Konstruktion eines Bolzen-Buchsen Prüfstandes für Brückner Kettenstränge</td>
<td></td>
</tr>
<tr>
<td>Kropf Matthias</td>
<td>Prof. Riß</td>
<td>Prof. Reuter</td>
<td>Entwicklung und Implemenierung von arbeits-sicherheits- und fertigungstechnischen Vorgangsweisen für einen SLS-Arbeitsplatz</td>
<td></td>
</tr>
<tr>
<td>Fuchs Stefan</td>
<td>Prof. Schugmann</td>
<td>Prof. Prasch</td>
<td>Optimalste Austausch der Fahrwerksauf- und Nachbereitung im Zuge der Einführung einer neuen Fahrzeuggeneration bei MAN Truck & Bus SE am Standort München</td>
<td></td>
</tr>
<tr>
<td>Schumann Markus</td>
<td>Prof. Spindler</td>
<td>Prof. Buttinger</td>
<td>Vorentwicklung einer mehrgliedrigem Kaskaden-Kühlermaschine</td>
<td></td>
</tr>
<tr>
<td>Martinetz Michael</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Konstruktion und Aufbau eines Prüfstandes zur Unter-Suchung von Band-Verteileinrichtungen von Flüssiggemischkranwagen und die Analyse von Verteileinrichtungen</td>
<td></td>
</tr>
<tr>
<td>Krebs Julian</td>
<td>Prof. Zentgraf</td>
<td>R. Hager</td>
<td>Portierung einer auf Matlab basierenden Reglerroutingumgebung - von der Desktopanwendung zur Webapplikation</td>
<td></td>
</tr>
<tr>
<td>Nachname</td>
<td>Vorname</td>
<td>Erstprüfer</td>
<td>Zweitprüfer</td>
<td>Thema</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Freudenberger</td>
<td>Simon</td>
<td>Prof. Reuter</td>
<td>Prof. Schinagl</td>
<td>Entwicklung und Simulation von Konzepten zur Entkopplung eines elektrischen Kältemittelverdichters</td>
</tr>
<tr>
<td>Hemauer</td>
<td>Bernhard</td>
<td>Prof. Lazar</td>
<td>Prof. Prasch</td>
<td>Definition und Erarbeitung eines Standards für Aufstellungszeichnungen von Mehrwegpack- und Paletteinrichtungen</td>
</tr>
<tr>
<td>Möslang</td>
<td>Lukas</td>
<td>Prof. Reuter</td>
<td>Prof. Meierlohr</td>
<td>Konzeptentwicklung einer Handhabungseinheit zum Umsetzen von Werkstücken zwischen zwei unterschiedlich angetriebenen Werkstück-transportsystemen</td>
</tr>
<tr>
<td>Schneider</td>
<td>Moritz</td>
<td>Prof. Wagner</td>
<td>Prof. Reuter</td>
<td>Robustheitssteigerung der Öl niveaumesung durch Optimierung der geometrischen Öl niveausensorintegration</td>
</tr>
<tr>
<td>Lehmann</td>
<td>Florian</td>
<td>Prof. Prasch</td>
<td>Prof. Meierlohr</td>
<td>Analyse und Optimierung des automatisierten Schwefeloids von Motorradheckrahmen</td>
</tr>
<tr>
<td>Hofmann</td>
<td>Philipp</td>
<td>Prof. Wagner</td>
<td>Prof. Reuter</td>
<td>Validerung und Weiterentwicklung der analytischen Bremsdruckberechnung sowie Konzept-erstellung einer automatischen Reibwertermittlung für die Bürstenstation</td>
</tr>
<tr>
<td>Oberhuber</td>
<td>Stephanie</td>
<td>Prof. Schinagl</td>
<td>Prof. Haigl</td>
<td>Konstruktion eines Versuchsaufbaus zur Messung von Lagersatzsteifigkeiten</td>
</tr>
<tr>
<td>Reiter</td>
<td>Michael</td>
<td>Prof. Meierlohr</td>
<td>Prof. Thurner</td>
<td>Untersuchung erweiterter Fertigungsmöglichkeiten an Bauteilen im Bereich der Hochfrequenztechnik</td>
</tr>
<tr>
<td>Söldner</td>
<td>Kilian</td>
<td>Prof. Schugmann</td>
<td>Prof. Meierlohr</td>
<td>Neuplanung der Fertigung von Eizelteilen für Motorradheckrahmen bei der MAFO Systemtechnik AG</td>
</tr>
<tr>
<td>Prollini</td>
<td>Mergim</td>
<td>Prof. Wagner</td>
<td>Prof. Reuter</td>
<td>Entwicklung und Konstruktion eines Greif-systems für Flaschen</td>
</tr>
<tr>
<td>Möhlert</td>
<td>Maximilian</td>
<td>Prof. Bucker</td>
<td>Simon Schuster</td>
<td>Prototyp zur Wärmemengenermittlung auf Basis von Ultraschall-Durchflussmessung</td>
</tr>
<tr>
<td>Kentzia</td>
<td>Simon</td>
<td>Prof. Lazar</td>
<td>Prof. Wagner</td>
<td>Fahrwerkkonzept eines differenzialgetriebenen und fahrerlosen Transportfahrzeuges mit Auslegung der dazugehörigen Antriebe</td>
</tr>
<tr>
<td>Schwabl</td>
<td>Benedikt</td>
<td>Prof. Brinkmann</td>
<td>Prof. Reuter</td>
<td>Analyse und Konstruktion eines generativ gefertigten Greifsystems für Flaschen</td>
</tr>
<tr>
<td>Pichter</td>
<td>Markus</td>
<td>Prof. Prasch</td>
<td>Prof. Meierlohr</td>
<td>Analyse und Bewertung von Maschinenkonzepten für das Titan auftragsschweißen</td>
</tr>
<tr>
<td>Müller</td>
<td>Alexander</td>
<td>Prof. Buttinger</td>
<td>Prof. Bucker</td>
<td>Analyse von instationären Verdichterrad-strömungen eines Abgasturbo-laders in der Nähe der Pumpgrenze</td>
</tr>
<tr>
<td>Söldner</td>
<td>Kilian</td>
<td>Prof. Schugmann</td>
<td>Prof. Meierlohr</td>
<td>Neuplanung der Fertigung von Eizelteilen für Motorradheckrahmen bei der MAFO Systemtechnik AG</td>
</tr>
<tr>
<td>Prollini</td>
<td>Alexander</td>
<td>Prof. Wagner</td>
<td>Prof. F. Fischer</td>
<td>Entwicklung und Konstruktion eines Greif-systems für Beladeroboter von Werkzeug-maschinen</td>
</tr>
<tr>
<td>Schmid</td>
<td>Sebastian</td>
<td>Prof. Wagner</td>
<td>Prof. F. Fischer</td>
<td>Entwicklung eines Verbrauchswerkzeuges zur Optimierung von Verfahren und Parametern zum Trennen und Perforieren von Kunststoffolen</td>
</tr>
<tr>
<td>Söldner</td>
<td>Kilian</td>
<td>Prof. Schugmann</td>
<td>Prof. Meierlohr</td>
<td>Neuplanung der Fertigung von Eizelteilen für Motorradheckrahmen bei der MAFO Systemtechnik AG</td>
</tr>
<tr>
<td>Prollini</td>
<td>Mergim</td>
<td>Prof. Wagner</td>
<td>Prof. Reuter</td>
<td>Entwicklung eines GAV-Control-Plugins zum Visualisieren von 2D-Laserscandaten und zum Matchen von Landmarken*</td>
</tr>
<tr>
<td>Hasic</td>
<td>Sanel</td>
<td>Prof. Wagner</td>
<td>Prof. Schmidt</td>
<td>Entwicklung einer Prüfspezifikation zur Ultraschallprüfung von Laserschweißnähten an Airbag-Gasgeneratoren</td>
</tr>
<tr>
<td>Gans</td>
<td>Stephan</td>
<td>Prof. Lazar</td>
<td>Prof. Prasch</td>
<td>Entwicklung einer Drehmaschinen-Spindeleneinheit mit 125 mm Durchgangsbohrung</td>
</tr>
<tr>
<td>Lippmann</td>
<td>Dennis</td>
<td>Prof. Reuter</td>
<td>Prof. Brinkmann</td>
<td>Analyse, Konstruktion und wirtschaftliche Weiterentwicklung eines mit generativen Verfahren hergestellten Federbegreifer*</td>
</tr>
<tr>
<td>Eisner</td>
<td>Michael</td>
<td>Prof. Wagner</td>
<td>Prof. Reuter</td>
<td>Konzeption und Entwurf einer Prüforichtung zur Messung der Auszugskraft an Keramik-hülsen von Lichtleitersteckverbindern*</td>
</tr>
<tr>
<td>Armbrüster</td>
<td>Felix</td>
<td>Prof. Lazar</td>
<td>Georg Wimmer</td>
<td>Untersuchung zur Anwendbarkeit des Wire Arc Additive Manufacturing im Anlagen- und Behälterbau</td>
</tr>
<tr>
<td>Name</td>
<td>Projektleiter</td>
<td>Professoren</td>
<td>Textaufgaben</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Sporer Tobias</td>
<td>Prof. Reuter</td>
<td>Prof. Wagner</td>
<td>Entwicklung eines hydraulischen Baggerschnellwechselsystems mit Front- und Rear-Pin-Lock</td>
<td></td>
</tr>
<tr>
<td>Inninger Thomas</td>
<td>Prof. Lazar</td>
<td>Prof. Meierlohr</td>
<td>Rüstoptimierung durch Anwendung der LEAN-Methode SMED in der Abteilung Metallfertigung am Beispiel einer Anlage</td>
<td></td>
</tr>
<tr>
<td>Maier Michael</td>
<td>Prof. Reuter</td>
<td>Prof. Versen</td>
<td>Entwicklung einer Sensoreinheit zur Ingegation zwischen Mobilfunkbasisstation und Antenne</td>
<td></td>
</tr>
<tr>
<td>Schneider Ludwig</td>
<td>Prof. Zentgraf</td>
<td>Prof. Stahl</td>
<td>Höhen- und Lageregelung eines Quadrocopters</td>
<td></td>
</tr>
<tr>
<td>Konetzki Michael</td>
<td>Prof. Wagner</td>
<td>Prof. Perschel</td>
<td>Konzeptionierung des Handleings von Packhilfsmitteln</td>
<td></td>
</tr>
<tr>
<td>Jakob Sebastian</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Konstruktion eines Kartonagenseparatoris für eine kontinuierlich arbeitende Verpackungsmaschine</td>
<td></td>
</tr>
<tr>
<td>Vonhof Alexander</td>
<td>Prof. Reuter</td>
<td>Prof. Lazar</td>
<td>Detailkonzeption, Konstruktion und Erstellung einer FMEA für einen Prüfstand zur Ermittlung des Kennfeldes universeller Exzentschneckenpumpen</td>
<td></td>
</tr>
<tr>
<td>Bauer Jonas Marinus</td>
<td>Prof. Reuter</td>
<td>Prof. Doleschel</td>
<td>Konstruktion und Integration einer Zuführoutine als Teil einer Keinaubereitungsanlage für organische Abfälle</td>
<td></td>
</tr>
<tr>
<td>Stemmer Nikolai</td>
<td>Prof. Doleschel</td>
<td>Prof. Lazar</td>
<td>Ausarbeitung einer kompakten Antriebseinheit für ein lährenbewegliches TFF</td>
<td></td>
</tr>
<tr>
<td>Babi Michael</td>
<td>Prof. Versen</td>
<td>Prof. Lazar</td>
<td>Anforderungs- und Einsatzuntersuchung von Pressfit-Verbindungen</td>
<td></td>
</tr>
<tr>
<td>Jäger Georg</td>
<td>Prof. Wagner</td>
<td>Prof. Lazar</td>
<td>Kontraktive Überarbeitung einer Behältersabdeckung für einen Selbstfaher-Futtermischwagen</td>
<td></td>
</tr>
<tr>
<td>Winkler Bernhard</td>
<td>Prof. Wagner</td>
<td>Prof. Lazar</td>
<td>Knotekomponente für Automobilsteckverbinder-Vergleich von Leistungsmerkmalen</td>
<td></td>
</tr>
<tr>
<td>Köllhofer Stefan</td>
<td>Prof. Schemme</td>
<td>Prof. Karlinger</td>
<td>Mediendichtes Umpirnten</td>
<td></td>
</tr>
<tr>
<td>Schmoll Manuel</td>
<td>Prof. Reuter</td>
<td>Prof. Meierlohr</td>
<td>Konstruktion, Aufbau und Inbetriebnahme eines Prüfstandes zur Ermittlung biegekritischer Drehzahlen</td>
<td></td>
</tr>
<tr>
<td>Hofer Andreas</td>
<td>Prof. Reuter</td>
<td>Prof. Brinkmann</td>
<td>Strukturierung und Optimierung des Konstruktionsprozesses im Sondermaschinenbau</td>
<td></td>
</tr>
<tr>
<td>Wübbels Christoph</td>
<td>Prof. Brinkmann</td>
<td>Prof. Wagner</td>
<td>Untersuchung des Einflusses von Glasfasern auf die Festigkeit von Spritzgussbauteilen</td>
<td></td>
</tr>
<tr>
<td>Schlief Florian</td>
<td>Prof. Lazar</td>
<td>Prof. Reuter</td>
<td>Konzeptdarstellung für einen Praktikumsversuch zur Demostration eines CAD/CAM-Fräsprozesses</td>
<td></td>
</tr>
<tr>
<td>Unterreitmeier Jonas</td>
<td>Prof. Wanger</td>
<td>Prof. Lazar</td>
<td>Entwicklung eines Processes zur Justierung der Position von LIDAR-Scannern am Parkroboter RAY</td>
<td></td>
</tr>
<tr>
<td>Schneider Martin</td>
<td>Prof. Neumaier</td>
<td>Prof. Reuter</td>
<td>Entwicklung einerLastschatzkipplung für das zweistufige Fahrzeuggetriebe für Luftfahrtabzweige</td>
<td></td>
</tr>
<tr>
<td>Obermaier Thomas</td>
<td>Prof. Brinkmann</td>
<td>Prof. Riß</td>
<td>Prozessüberwachung des Laser-Strahlschneidung durch optische Verfahren</td>
<td></td>
</tr>
<tr>
<td>Süß Andreas</td>
<td>Prof. Neumaier</td>
<td>Prof. Reuter</td>
<td>Ausarbeitung und Bewertung eines Sensorkonzeptes zur Lichtraumüberwachung bei einem automatisierten Rangierfahrzeug</td>
<td></td>
</tr>
<tr>
<td>Vetter Julian</td>
<td>Prof. Reuter</td>
<td>Prof. Neumaier</td>
<td>Konzeptausarbeitung eines Maschinengestelles für den modularen Funktionsbaukasten der Verpackungsmaschine Variopac Pro</td>
<td></td>
</tr>
<tr>
<td>Leiter Nina</td>
<td>Prof. Versen</td>
<td>Prof. Lazar</td>
<td>Einflussanalyse der Bauteileichfugigkeit auf verbaute Treibstoffe in Airbag-Gasgeneratoren</td>
<td></td>
</tr>
<tr>
<td>Lippmann Kevin</td>
<td>Prof. Reuter</td>
<td>Prof. Wagner</td>
<td>Korrelation von definierten Merkmalen und anthropometrischen Personendaten mit Sitzverstellwegen zur ergonomischen Fahrzeugeinrichtung</td>
<td></td>
</tr>
<tr>
<td>Weiß Dorian</td>
<td>Prof. Lazar</td>
<td>Prof. Neumaier</td>
<td>Erarbeiten einer Methode zur Erfassung von Verhaltensänderungen im Behälterzulauf vor der Variopac Pro</td>
<td></td>
</tr>
<tr>
<td>Huber Michael</td>
<td>Prof. Lazar</td>
<td>Prof. Meierlohr</td>
<td>Entwicklung einer Methode zur Erfassung von nichtlinearen Bewegungen bei Montagepro-Zessen mit dem Ziel der Analyse von virtuellen Bauträumen</td>
<td></td>
</tr>
<tr>
<td>Hubert Andreas</td>
<td>Prof. Neumaier</td>
<td>Prof. Reuter</td>
<td>Entwicklung eines Hochdrehzahligitters für elektrische Antriebe in Off-Highway Anwendungen</td>
<td></td>
</tr>
<tr>
<td>Weber Christian</td>
<td>Prof. Reuter</td>
<td>Prof. Schinagl</td>
<td>Entwicklung eines Motorbaustens für ein Übergabesystem in der Lebensmittelindustrie</td>
<td></td>
</tr>
<tr>
<td>Albenstetter Tobias</td>
<td>Prof. Reuter</td>
<td>Prof. Schemme</td>
<td>Prozessanalyse und Konzeptentwicklung zur Verbesserung der Projektsteuerung in einem mittelständischen Maschinenbauunternehmen</td>
<td></td>
</tr>
</tbody>
</table>
Mechatronik

2020

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klier</td>
<td>Dennis</td>
<td>Prof. Schinagl</td>
<td>Prof. Wagner</td>
<td>Erarbeitung einer analytischen Methode zur Robustheitsbewertung von HIC-Werten beim Fußgängerschutz-Kopfanprall</td>
</tr>
<tr>
<td>Laßinger</td>
<td>Anja</td>
<td>Prof. Karlinger</td>
<td>Prof. Breunig</td>
<td>Analyse intelligenter Kennzahlen zur Anomalieerkennung und Ursachenfindung an Kunststoffspritzgussmaschinen</td>
</tr>
<tr>
<td>Landrchinger</td>
<td>Florian</td>
<td>Prof. Meierlohr</td>
<td>Prof. Versen</td>
<td>Analyse und Optimierung von Zerspanungsprozessen anhand von Sensordaten</td>
</tr>
<tr>
<td>Eggs</td>
<td>Raphael</td>
<td>Prof. Wagner</td>
<td>Prof. Schinagl</td>
<td>Vergleich der Maßhaltigkeit verschiedener additiver Fertigungsverfahren</td>
</tr>
<tr>
<td>Schustermann</td>
<td>Quirin</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Analyse zur zuverlässigen Bilderkennung von Waste-Marken auf Leiterplatten</td>
</tr>
<tr>
<td>Merzel</td>
<td>Nikolaas</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Entwicklung und praktische Erprobung eines Stromschienen zur Analyse intelligenter Kennzahlen zur Anomalieerkennung und</td>
</tr>
<tr>
<td>Höck</td>
<td>Sebastian</td>
<td>Prof. Schinagl</td>
<td>Prof. Meierlohr</td>
<td>Konstruktion einer elektromechanischen Entgratungstrommel</td>
</tr>
<tr>
<td>Buchner</td>
<td>Florian</td>
<td>Prof. Perschl</td>
<td>Prof. Thurner</td>
<td>Kontaktlose Energietransferung in Haushaltsgeräten - Entwurf einer proprietären Lösung im Vergleich mit bestehenden Standards</td>
</tr>
<tr>
<td>Bien</td>
<td>Marcel</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Automatisierte Tests von SPS-Software-Komponenten</td>
</tr>
<tr>
<td>Karl</td>
<td>Fabian</td>
<td>Prof. Versen</td>
<td>Prof. Schinagl</td>
<td>Konzeptionierung und Entwicklung eines Messsystems für Verpresskräfte in Spindelbrühneinheiten</td>
</tr>
<tr>
<td>Alejnikov</td>
<td>Evgeni</td>
<td>Prof. Krämer</td>
<td>Prof. Perschl</td>
<td>Entwicklung eines Verfahren zur Bestimmung und Kalibrierung d. fertigungsbedingten Positiontoleranzen von fahrräderlosen</td>
</tr>
<tr>
<td>Gmeiner</td>
<td>Max</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Condition Monitoring</td>
</tr>
<tr>
<td>Höttl</td>
<td>Stefan</td>
<td>Prof. Versen</td>
<td>Prof. Perschl</td>
<td>Charakterisierung und Evaluation ausgewählter Analog Digital Converters zu Quantisierungsarchitekturen</td>
</tr>
<tr>
<td>Branicki</td>
<td>Marinus</td>
<td>Prof. Perschl</td>
<td>Prof. Versen</td>
<td>Entwicklung eines Lenkmodells für Fahrassistenzsysteme mittels MATLAB/Simulink und der Unity Engine</td>
</tr>
<tr>
<td>Tekou Nde</td>
<td>Herve</td>
<td>Prof. Krämer</td>
<td>Prof. Perschl</td>
<td>Intelligente Sensortechnik, Ist-Analyse, Bedarf, Stand der Technik, Trends und Entwicklung</td>
</tr>
<tr>
<td>Kaffl</td>
<td>Anian</td>
<td>Prof. Meierlohr</td>
<td>Prof. Winter</td>
<td>Techn. Bewertung und Ableitung von DFM-Vorgaben zum Einsatz von Bestückungsautomatisationen für die Mobilfunkantennenproduktion</td>
</tr>
<tr>
<td>Zauner</td>
<td>Andreas</td>
<td>Prof. Meierlohr</td>
<td>Prof. Perschl</td>
<td>Optimierung einer Testanlage für Fiber Mould Produkte</td>
</tr>
<tr>
<td>Hornauer</td>
<td>Franz</td>
<td>Prof. Meierlohr</td>
<td>Prof. Wagner</td>
<td>Optimierung der Montage von pneumatischen und hydraulischen Dosierpumpen</td>
</tr>
<tr>
<td>Scheufler</td>
<td>Luca</td>
<td>Prof. Schinagl</td>
<td>Prof. Wagner</td>
<td>Konstruktion eines Hubmagazins zur Lagerung von Greiferkopf-Garnituren der Maschine Krones Smartpac</td>
</tr>
<tr>
<td>Paeßler</td>
<td>Sven</td>
<td>Prof. Seliger</td>
<td>Prof. Thurner</td>
<td>Auslegung eines E/E-Systems für einen Prüfstandaufbau</td>
</tr>
<tr>
<td>Strauss</td>
<td>Marius</td>
<td>Prof. Meierlohr</td>
<td>Prof. Muscat</td>
<td>Gegenüberstellung von Oberflächenbeschichtungen auf Basis eines zu entwickelnden umfassenden Anforderungskatalog</td>
</tr>
<tr>
<td>Himmler</td>
<td>Florian</td>
<td>Prof. Krämer</td>
<td>Prof. Perschl</td>
<td>Entwicklung eines Algorithmus für Linienerweichigungssysteme bei Endverpackungsmaschinen</td>
</tr>
<tr>
<td>Brader</td>
<td>Andreas</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Visual Motion Tracking for Driver Camera Systems / Visuelle Bewegungsverfolgung zur Fahrerüberwachung</td>
</tr>
</tbody>
</table>

2019

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin</td>
<td>Philipp</td>
<td>Prof. Wagner</td>
<td>Prof. Versen</td>
<td>Radaufhängungsprüfung an modernen Pkw</td>
</tr>
<tr>
<td>Schmelzer</td>
<td>Marius</td>
<td>Prof. Perschl</td>
<td>Prof. Meierlohr</td>
<td>Entwicklung eines Simulationsteststandes für die Greifer-kopfwechselfunktion von Palettierern</td>
</tr>
<tr>
<td>Sturm</td>
<td>Simon</td>
<td>Prof. Seliger</td>
<td>Prof. Hagl</td>
<td>Entwicklung einer Testvorrichtung zum Messen von elektronischen Komponenten im Magnetfeld</td>
</tr>
<tr>
<td>Obermaier</td>
<td>Hans</td>
<td>Prof. Schäfle</td>
<td>Prof. Popp</td>
<td>Optimierung der Absaugung bei der Abgasuntersuchung eine Pkw’s</td>
</tr>
<tr>
<td>Student</td>
<td>Name</td>
<td>Professoren</td>
<td>Bachelorarbeit / Masterarbeit</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Schuhbauer</td>
<td>Severin</td>
<td>Prof. Perschl, Prof. Schittenhelm</td>
<td>Redesign einer Steuerung für einen Igus-Laborroboter und Neuentwicklung der Kommunikationschnittstellen</td>
<td></td>
</tr>
<tr>
<td>Lucas</td>
<td>Maximilian</td>
<td>Prof. Helbig, Prof. Reuter</td>
<td>Design und Implementierung einer grafischen Bedienkonsole für einen Fahrsimulator mit Hilfe eines Einplatinencomputers</td>
<td></td>
</tr>
<tr>
<td>Geerds</td>
<td>Johannes</td>
<td>Prof. Perschl, Peter Crämer</td>
<td>Konzeptionierung und Einrichtung eines Systems für den Fernzugriff zur Anwendung an Werkzeugmaschinen</td>
<td></td>
</tr>
<tr>
<td>Steinbacher</td>
<td>Michael</td>
<td>Prof. Schittenhelm, Prof. Meierlohr</td>
<td>Einsatzmöglichkeiten und Grenzen von Cobots in der Produktion</td>
<td></td>
</tr>
<tr>
<td>Callegari</td>
<td>Maximilian</td>
<td>Prof. Versen, Prof. Seliger</td>
<td>Entwicklung eines Systems zur Energiegewinnung aus der Umgebung für die Versorgung autarker Telematikeinheiten</td>
<td></td>
</tr>
<tr>
<td>Märkl</td>
<td>Markus</td>
<td>Prof. Hagl, Julia Höflither</td>
<td>Modellbasierte Positionsregelung mit SW in einem Prozessor und mit VHDL in einem FPGA</td>
<td></td>
</tr>
<tr>
<td>Mußner</td>
<td>Regina</td>
<td>Prof. Schinagl, Prof. Schroeter</td>
<td>Erstellen von Qualifizierungsmethoden für glasfaserverstärkte Bandagen</td>
<td></td>
</tr>
<tr>
<td>Rost</td>
<td>Sebastian Jan</td>
<td>Prof. Versen, Prof. Schinagl</td>
<td>Konzeptionierung und Validierung eines Betriebsfestigkeitsprüfstandes für einzelne Komponenten der Brüh-einheit eines Kaffeevollautomaten</td>
<td></td>
</tr>
<tr>
<td>Lachner</td>
<td>Kilian</td>
<td>Prof. Perschl, Prof. Wagner</td>
<td>Konzepterstellung und Machbarkeitsprüfung eines Diagnosefahrzeugs für eine Elektrohängelift</td>
<td></td>
</tr>
<tr>
<td>Ryll</td>
<td>Mathias</td>
<td>Prof. Popp, Prof. Versen</td>
<td>Design und Layout eines Operational Transconductance Amplifiers</td>
<td></td>
</tr>
<tr>
<td>Pfeiffer</td>
<td>Josef</td>
<td>Prof. Stichler, Prof. Zentgraf</td>
<td>Erstellung und Bewertung von Modellen zur Bräunungsvorhersage basierend auf Multispektralbildern</td>
<td></td>
</tr>
<tr>
<td>Held</td>
<td>Benedikt</td>
<td>Prof. Perschl, Prof. Meierlohr</td>
<td>Konzeption und Entwicklung eines Prozesses zur Vereinzelung von Schüttgut</td>
<td></td>
</tr>
<tr>
<td>Viktorin</td>
<td>Pavel Karl</td>
<td>Prof. Perschl, Prof. Versen</td>
<td>Wireless Connectivity Produkte für DHCON IOT Plattform</td>
<td></td>
</tr>
<tr>
<td>Schmid</td>
<td>Marinus</td>
<td>Prof. Stahl, Prof. Doleschel</td>
<td>Entwicklung eines drehbaren Systems zur kontaktlosen Datenübertragung bis 20 Mbit/s</td>
<td></td>
</tr>
<tr>
<td>Maier</td>
<td>Manuel</td>
<td>Prof. Doleschel, Prof. Reuter</td>
<td>Entwicklung und Konstruktion eines Systems zur Objekti dentifikation am Beispiel von Federlenkerlagern</td>
<td></td>
</tr>
<tr>
<td>Nürk</td>
<td>Alexander</td>
<td>Prof. Versen, Prof. Stahl</td>
<td>Entwurf und Verifikation eines dezentralen Batterienmanagement-Systems für Lithium-Ionen-Batterien mit Firmware für eine MKW412 Mikrocontroller</td>
<td></td>
</tr>
<tr>
<td>Haas</td>
<td>Michaela</td>
<td>Prof. Perschl, Andreas Bernhard</td>
<td>Planung und Umsetzung einer Steuerung mit Sicherheitsensorik für eine mobile Roboteranwendung</td>
<td></td>
</tr>
<tr>
<td>Krettek</td>
<td>Martin</td>
<td>Prof. Zentgraf, Adrian Zeitler</td>
<td>Entwicklung mobiler und einfacher regelungstechnischer Demonstrationsversuche auf einem Arduino-Board mit MATLAB/Simulink-Anbindung</td>
<td></td>
</tr>
<tr>
<td>Bienemann</td>
<td>Alexander</td>
<td>Prof. Perschl, Prof. Versen</td>
<td>Modellbasierte Entwicklung eines echtzeitfähigen DoIP-Gateways für automotive Steuergeräte zur Diagnose an Hardware-in-the-Loop-Systemen</td>
<td></td>
</tr>
<tr>
<td>Helldobler</td>
<td>Maximilian</td>
<td>Prof. Krämer, Peter Crämer</td>
<td>Optimierung und Automatisierung eines Serienprüfstandes für Scheibenlaufräume</td>
<td></td>
</tr>
<tr>
<td>Paul</td>
<td>Florian</td>
<td>Prof. Schittenhelm, Prof. Meierlohr</td>
<td>Verbesserung der Indoor-Positionierung eines autonomen Roboters am Beispiel des Segway-Loomos</td>
<td></td>
</tr>
<tr>
<td>Saidl</td>
<td>Saber</td>
<td>Prof. Prasch, Prof. Maier Chr.</td>
<td>Ermittlung von Anforderungen und Konzept des Internet der Dinge am moderne Gebäudeautomation</td>
<td></td>
</tr>
<tr>
<td>Brosig</td>
<td>Markus</td>
<td>Prof. Krämer, Prof. Mühlbauer</td>
<td>Fehleridentifizierung zur automatischen oder bedienergesteuerten Fehlerbehebung</td>
<td></td>
</tr>
<tr>
<td>Zunhammer</td>
<td>Georg</td>
<td>Prof. Zentgraf, Prof. Schinagl</td>
<td>Neigungsregelung eines Gülletankwagens</td>
<td></td>
</tr>
<tr>
<td>Gökce</td>
<td>Kazim</td>
<td>Prof. Schmidt, Prof. Stahl</td>
<td>Automatische Ermittlung einer optimalen Sensorposition für eine Etikettenausrichtung</td>
<td></td>
</tr>
<tr>
<td>Hilger</td>
<td>Martin</td>
<td>Prof. Versen, Prof. Krämer</td>
<td>Auslegung und Implementierung eines Seilzugwegaufnehmers Sensors zur Prüfung von Verzug in Fenstern nach DIN EN 14659</td>
<td></td>
</tr>
<tr>
<td>Baumann</td>
<td>Benedikt</td>
<td>Prof. Meierlohr, Prof. Perschl</td>
<td>Konzeptionierung und Entwicklung eines Prototypen für ein Smart Device zur Förderung des fokussierten Arbeitens</td>
<td></td>
</tr>
<tr>
<td>Altman</td>
<td>Patrik</td>
<td>Prof. Zentgraf, Prof. Versen</td>
<td>Entwickeln einer automatisierten Testumgebung für hochdynamische, bidirektionale Stromversorgung mit MATLAB/Simulink</td>
<td></td>
</tr>
<tr>
<td>Nachname</td>
<td>Vorname</td>
<td>Erstprüfer</td>
<td>Zweitprüfer</td>
<td>Thema</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Kaiser</td>
<td>Florian Johannes</td>
<td>Prof. Zehner</td>
<td>Dr. Mayer O.</td>
<td>Analyse des Einflusses der Wolkenbewegung auf den Strahlungstransfer und Simulation resultierender Einstrahlungshöhenungen mit LibRadtran und Matlab</td>
</tr>
<tr>
<td>Hoßfeld</td>
<td>Michael</td>
<td>Prof. Schanda</td>
<td>Dr. Mayr A.</td>
<td>Erweiterung des Empfangsplattenverfahrens gemäß DIN EN 16657: 2017-10 auf Einbausituationen in Plattenebene</td>
</tr>
<tr>
<td>Fröse</td>
<td>Maximilian</td>
<td>Prof. Krommes</td>
<td>Prof. Schugmann</td>
<td>Methode zur Integration ökologischer Zielgrößen in den Fabrikplanungsprozess</td>
</tr>
<tr>
<td>Schauer</td>
<td>Josef</td>
<td>Prof. Schiemme</td>
<td>Prof. Lazar</td>
<td>Analyse von Faserbandstruktur für Applikationen mit Anspruch an hohe Dimensionenstabilität</td>
</tr>
<tr>
<td>Böhm</td>
<td>Stefan-Andreas</td>
<td>Prof. Kramer</td>
<td>Prof. Perschl</td>
<td>Entwicklung eines hybriden Verfahrens für die Bahnplanung eines Industrieroboters via Mixed-Reality-Anwendungen</td>
</tr>
<tr>
<td>Kuchler</td>
<td>Fabian</td>
<td>Prof. Krommes</td>
<td>F. Tomaschko</td>
<td>Entwicklung und Konzeption von Kennzahlen zum Monitoring und Benchmarking der Ressourceneffizienz eines holzverarbeitenden Prozesses auf Basis von Industrie 4.0 Technologien</td>
</tr>
<tr>
<td>Boschert</td>
<td>Andreas</td>
<td>Prof. Zehner</td>
<td>Prof. Neumaier</td>
<td>Vorhersage von Wolkenpositionen in Aufnahmen von omnidirektionalen Wolkenkamera für eine zeitliche und räumlich hochauflöste Kürzestfristprognose</td>
</tr>
<tr>
<td>Nolte</td>
<td>Johannes</td>
<td>Prof. Wagner</td>
<td>Prof. Schinagl</td>
<td>Konzipierung und Entwicklung eines automatisierten Entladesystems für Pakete in Frachtcontainern</td>
</tr>
<tr>
<td>Heitauer</td>
<td>Mathias</td>
<td>Prof. Versen</td>
<td>Prof. Popp</td>
<td>Entwurf und Verifikation eines Switched Capacitor Sigma-Delta Modulators mit Hilfe der Cosimulation von MATLAB/Simulink und Cadence</td>
</tr>
<tr>
<td>Polier</td>
<td>Mathias</td>
<td>Prof. Brinkmann</td>
<td>Prof. Reuter</td>
<td>Vergleich verschiedener Antriebskonzepte eines Fused Deposition Modeling 3D Druckers anhand von Vibrationsmessungen und optischen Gegenüberstellungen von Benchmarkteilen</td>
</tr>
<tr>
<td>Stut</td>
<td>Natalie</td>
<td>Prof. Zehner</td>
<td>Dr. O. Mayer</td>
<td>Analyse von Einstrahlungsvolatilität und -überhöhungen in hochauflösten Datensätzen des DWD und MIM zur Untersuchung von Korrelationen zu meteorologischen Messdaten</td>
</tr>
<tr>
<td>Waizmann</td>
<td>Sophia</td>
<td>Prof. Stichler</td>
<td>Prof. Mayr</td>
<td>Inertialnavigation in der Verschüttensuche</td>
</tr>
<tr>
<td>De Mattia</td>
<td>Christian</td>
<td>Prof. Spindler</td>
<td>M. Wirsberger</td>
<td>Entwicklung eines modularen ESP32-basierten Monitoringsystems zur Mehrkanalmessung der Wechselstromleistung nach dem Echtheits- und Energiemessungswertverfahren</td>
</tr>
<tr>
<td>Schuster</td>
<td>Simon</td>
<td>Prof. Spindler</td>
<td>Prof. Buttinger</td>
<td>Technisches Monitoring und bewertende Analyse von dreistufigen Fernwärmeübergabestationen</td>
</tr>
<tr>
<td>Borchardt</td>
<td>Ilona</td>
<td>Prof. Krommes</td>
<td>F. Tomaschko</td>
<td>Entwicklung eines messdatenbasierten Prognosemodells für die Energie- und Stoffstrombilanzierung eines Holzverarbeitungsprozesses</td>
</tr>
<tr>
<td>Maier</td>
<td>Constantin</td>
<td>Prof. Wagner</td>
<td>Prof. Neumeier</td>
<td>Entwicklung und Konstruktion einer Diamantkreissäge für einen Anbaugeräteträger zum Schneiden von Beton und Mauerwerk</td>
</tr>
<tr>
<td>Märkl</td>
<td>Markus</td>
<td>Prof. Hagl</td>
<td>J. Höltlhaier</td>
<td>Hochdynamische Positionsregelung auf SoC Basis</td>
</tr>
<tr>
<td>Hesl</td>
<td>Cindy</td>
<td>Prof. Zehner</td>
<td>Dr. O. Mayer</td>
<td>Klimaschutz: Handlungsfelder und Empfehlungen für Unternehmen</td>
</tr>
<tr>
<td>Keindl</td>
<td>Florian</td>
<td>Prof. Schroeter</td>
<td>Prof. Strübbe</td>
<td>Untersuchung des Biegeverzugs von Doppelstegplatten</td>
</tr>
<tr>
<td>Losbichler</td>
<td>Daniel</td>
<td>Prof. Müller</td>
<td>Dr. Leidig</td>
<td>Untersuchung des Einflusses von Legierungsbestandteilen auf die Korrosions Eigenschaften von Aluminiumlegierungen</td>
</tr>
<tr>
<td>Scheitter</td>
<td>Florian</td>
<td>Prof. Buttinger</td>
<td>S. Puntigam</td>
<td>Thermische Konditionierung eines Mikroskopierlabor - Konzeptionierung unter Verwendung numerischer Simulationen</td>
</tr>
<tr>
<td>Himmler</td>
<td>Florian</td>
<td>Prof. Krämer</td>
<td>Prof. Perschl</td>
<td>Entwicklung eines Algorithmus für Linienvorverwicklungsmaschinen bei Endverpackungsmaschinen</td>
</tr>
<tr>
<td>Brader</td>
<td>Andreas</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Visual Motion Tracking for Driver Camera Systems / Visuelle Bewegungsverfolgung zur Fahrerüberwachung</td>
</tr>
</tbody>
</table>
| Nachname | Vorname | Erstprüfer | Zweitprüfer | Thema
|----------------|---------------|-------------------|-------------------|--
| Kaltenecker | Michael | Prof. Versen | Julia Höllthaler | Entwicklung, Programmierung und Verifikation einer Datenschnittstelle zur Parametrisierung eines modellbasiert entwickelten FPGA-Systems
| Hofmann | Tobias | Prof. Hagl | Christian Pfuff | Analyse, Verifikation und Optimierung des strukturmechanischen Verhaltens von hochdynamischen Direktantrieben
| Wilser | Thomas | Prof. Schroeter | Prof. Muscat | Entwicklung von Vorrücksungen zum kontinuierlichen Plastifizieren von Cellulose
| Paukner | Manuel | Prof. Schroeter | Prof. Muscat | Entwicklung eines Verfahrens zum kontinuierlichen Plastifizieren von Cellulose
| Führmann | Michael | Prof. Brinkmann | Prof. Wagner | Abgleich kunststoffspezifischer Auslegungskriterien mittels FEM und mechanischer Prüfungen
| Küffer | Marcel | Prof. Spindler | Herr Sigg | Effizienzuntersuchung zur Trinkwarmwasserbereitung mit unterschiedlichen Beladungsstrategien durch Wärmepumpen
| Böttcher | Benedikt | Prof. Zentgraf | Adrian Zeitler | Entwicklung und Implementierung eines Verfahrens zur Online-Selbst-Identifikation eines dynamischen Systems
| Wohlschläger | Maximilian | Prof. Versen | Prof. Müller | Optische Detektion von Kunststoffen in Wasser mit Hilfe der Fluoreszenz
| Pleidl | Bernd | Prof. Zehner | Prof. Krödel | Zeit- und frequenzbasierte Modellierung elektrischer Industrienetze in Powerfactory zur Analyse der Netzqualität und der Wirkung möglicher Kompensations- und Filteranalgen
| Lindinger | Maximilian | Prof. Meierlohr | Prof. Hagl | Konzeption einer modularen Montageassistenz für Geräte der Feinwerktechnik
| Zenz | Ludwig | Prof. Stichler | Prof. Mayr | Inertialnavigation in der Verschüttetensuche
| Gervalla | Labinot | Prof. Wagner | Prof. Lazar | Entwicklung und Konstruktion sowie Ausarbeitung einer Vorrücksung für Sicherheitsversuche mit Motorrädern
| Poller | Johannes | Prof. Schinagl | Prof. Reuter | Einsatz eines digitalen Zwillings in der mechanischen Entwicklung von Hausgeräten und Nutzung zur Unterstützung der Produkt-Freigabe
| Hager-Brossmann| Marc | Prof. Bücker | Prof. Spindler | Messkonzept für Fernwärmsysteme
| Bernhardt | Bastian | Prof. Wagner | Ingeborg Daxberger| Entwicklung eines Matching-Algorithmus zur laserscannerbasierten Objektkennung für ein fahrerloses Transportfahrzeug
| Kneißl | Matthias | Prof. Versen | Frau Höllthaler | Entwurf und Charakterisierung paralleler Delta-Sigma ADC
| Bielenberg | Christian | Prof. Karlinger | Prof. Michanickl | Haftungsuntersuchungen zum lokalen Direktanspitzen von Furnieren
| Weiser | Rupert | Prof. Bücker | Herr Spindler | Kennzahlenkatalog für Fernwärmesysteme
| Aimer | Dominik | Prof. Krause | Herr Wimsberger | Simulation von Lüftungssystemen zum Entwurf eines Reglers für optimierte Luftqualität und Energieeffizienz
| Schefner | Dominik | Prof. Keil | Prof. Wagner | Machbarkeitsstudie zur hygienisch sicheren Verarbeitung und reinfektionsfreien Abfüllung von verschiedenen Produkten mithilfe **von Form-, Füll und Verschließanlagen**
| Bernatzky | Andreas | Prof. Zentgraf | Prof. Welisch | Untersuchung des Einflusses der Hagelabwasser auf Hagelschäden und meteorologische Daten im Landkreis Rosenheim
| Schneider | Franziska | Prof. Meierlohr | Prof. Wagner | Konzepte zur Funktionsintegration von optomechanischer Sensorik in das Greifwerkzeug der Roboterzelle zum Sortieren und Beschicken von Möbelteilen
<p>| Fischer | Sebastian | Prof. Buttinger | Prof. Lazar | Konzeptentwicklung eines nachhaltigen Antriebs für Kleinflugzeuge mittels Brennstoffzeiten-Elektromotor |</p>
<table>
<thead>
<tr>
<th>Nachname</th>
<th>Vorname</th>
<th>Erstprüfer</th>
<th>Zweitprüfer</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwangler</td>
<td>Magdalena</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Grundlagen zur Herstellung von biaxial vertrockneten Polyethylen-Folien</td>
</tr>
<tr>
<td>Bauer</td>
<td>Matthias</td>
<td>Prof. Zentgraf</td>
<td>Prof. Hagl</td>
<td>Modellierung und Simulation eines Magnetschwebeverzeichens basierend auf reellen Messdaten</td>
</tr>
<tr>
<td>Bocsa</td>
<td>Varun</td>
<td>Prof. Lazar</td>
<td>Prof. Reuter</td>
<td>Vibration Analysis-Development and Implementation of a Condition Monitoring System at the Hochfelln cable car facility, Bergen</td>
</tr>
<tr>
<td>Geißer</td>
<td>Katharina</td>
<td>Prof. Strübbe</td>
<td>Prof. Muscat</td>
<td>Entwicklung einer Methode zur Bewertung des tribologischen Verhaltens geschmierter Elastomere</td>
</tr>
<tr>
<td>Kuschel</td>
<td>Anna</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Entwicklung einer Prozesstechnologie für monodosierte Wasch- und Spülmaschinenmittel</td>
</tr>
<tr>
<td>Kumaras-warney</td>
<td>Prakash</td>
<td>Prof. Wagner</td>
<td>Prof. Schmidt</td>
<td>Capturing packet dimensions with an Intel 3D camera system using Point Cloud Library</td>
</tr>
<tr>
<td>Basavaranjappa</td>
<td>Srijanraj Marulasid-ddappa</td>
<td>Prof. Buttinger</td>
<td>Prof. Neumaier</td>
<td>CFD Simulation of a solar-driven model aircraft of Th Rosenheim</td>
</tr>
<tr>
<td>Saka</td>
<td>Orkan</td>
<td>Prof. Wagner</td>
<td>Prof. Prasch</td>
<td>Detection of Product Defects Using RealSense SR300 3D Camera</td>
</tr>
<tr>
<td>Parasu</td>
<td>Yeshwanth</td>
<td>Prof. Wagner</td>
<td>Prof. Prasch</td>
<td>Software development for the localization of randomly distributed cartons using 3D Camera Systems</td>
</tr>
<tr>
<td>Sridharan</td>
<td>Prashanth</td>
<td>Prof. Wagner</td>
<td>Prof. Neumaier</td>
<td>Creation of Synthetic Images based on Open GL for Machine Learning</td>
</tr>
<tr>
<td>Thonduru</td>
<td>Saikrishna</td>
<td>Prof. Wagner</td>
<td>Prof. Schmidt</td>
<td>Localization of Transparent Objects using Machine Learning</td>
</tr>
<tr>
<td>Menz</td>
<td>Katja</td>
<td>Prof. Perschl</td>
<td>Prof. Meierlohr</td>
<td>Konzeptentwicklung zur Referenzierung eines auf Linearmotoren basierenden Transportsystems im Kontext zu Industrie 4.0</td>
</tr>
<tr>
<td>Huber</td>
<td>Dominik</td>
<td>Prof. Perschl</td>
<td>P. Crämer</td>
<td>Automatisierte SPS Konfiguration zur Datensammlung von Sondерmaschinen der Firma Alpenland Maschinenbau GmbH</td>
</tr>
<tr>
<td>Sickinger</td>
<td>Mathias</td>
<td>Prof. Meierlohr</td>
<td>Prof. Reuter</td>
<td>Entwicklung einer neuen Sammeleinheit für Verpackungsmaschinen</td>
</tr>
<tr>
<td>Poudel</td>
<td>Sanjaya</td>
<td>Prof. Versen</td>
<td>A. Bernhard</td>
<td>Set up of a motor test stand for lab practice (with MATLAB/Simulink and an embedded target)</td>
</tr>
<tr>
<td>Ganesan</td>
<td>Fajalekshmi Ram-kumar</td>
<td>Prof. Versen</td>
<td>M. Wohlschläger</td>
<td>Controller development of a fluorescent decay time measurement</td>
</tr>
<tr>
<td>Marmorato</td>
<td>Prieto Mauro</td>
<td>Prof. Buttiner</td>
<td>Prof. Neumaier</td>
<td>Windresource assessment and yield prediction of wind phenomenon known as Erler wind in the Inn valley</td>
</tr>
<tr>
<td>Krishnappa</td>
<td>Puneeth Gowda</td>
<td>Prof. Lazar</td>
<td>Prof. Müller</td>
<td>Application of Additive Manufacturing to investment casting</td>
</tr>
<tr>
<td>Kooujgodu</td>
<td>Narendra Kaushik</td>
<td>Prof. Karlinger</td>
<td>Prof. Buttinger</td>
<td>Simplification of Swirl diffusers as boundary conditions for further CFD simulations</td>
</tr>
<tr>
<td>Hell</td>
<td>Josef</td>
<td>Prof. Reuter</td>
<td>Prof. Meierlohr</td>
<td>"Good Practice" zur Beauftragung des Musterumbaus eines Schienenfahrzeuges Untersuchungen anhand des Doppelstockwagen-Redesigns "Ideenzeug"</td>
</tr>
<tr>
<td>Muniswamy</td>
<td>Vivek</td>
<td>Prof. Schinagl</td>
<td>Prof. Wagner</td>
<td>FEM Simulation and Vibration Test Setup Optimization</td>
</tr>
<tr>
<td>Hauser</td>
<td>Lukas</td>
<td>Prof. Perschl</td>
<td>Prof. Versen</td>
<td>Modelbasierte Entwicklung in MATLAB/Simulink/Stateflow am Zielsystem Raspberry Pi</td>
</tr>
<tr>
<td>Srinivas</td>
<td>Bharathi</td>
<td>Prof. Buttinger</td>
<td>S. Puntigam</td>
<td>CFD study on performance of EVO6 oil injected screw compressor</td>
</tr>
<tr>
<td>Sonkamble</td>
<td>Umesh</td>
<td>Prof. Schinagl</td>
<td>Prof. Wagner</td>
<td>To create a methodology to improve the wheel speed sensor’s development process by considering the impact of real field loads on the sensor.</td>
</tr>
<tr>
<td>Mohandes Ayyoob</td>
<td>Mohamed Ali</td>
<td>Prof. Wagner</td>
<td>Prof. Schmid</td>
<td>Detection Quality with respect to Labelling Quality in Semantic Segmentation</td>
</tr>
<tr>
<td>Colombini</td>
<td>Filipe</td>
<td>Prof. Doleschel</td>
<td>Prof. Neumaier</td>
<td>Evaluation of Numerical Analysis Parameters on Metal sheet stamping</td>
</tr>
<tr>
<td>Kreuz</td>
<td>Sebastian</td>
<td>Prof. Versen</td>
<td>Prof. Stahl</td>
<td>Entwicklung eines microcontrollerbasierten, universellen Prüfmoduls zur entwicklungsbegleitenden Messung an USB-Typ-C/PowerDelivery-Lademodulen mit Anbindung an LabVIEW</td>
</tr>
<tr>
<td>Panchal</td>
<td>Purav</td>
<td>Prof. King</td>
<td>Prof. Zentgraf</td>
<td>Lenkmomentbasierte Drehmomentregelung für Kraftfahrzeuge</td>
</tr>
<tr>
<td>Name</td>
<td>Last Name</td>
<td>First Name</td>
<td>Last Name</td>
<td>First Name</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Magadum</td>
<td>Sourabh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parikh</td>
<td>Vatsal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kratzert</td>
<td>Lorenz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobade</td>
<td>Vivek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huber</td>
<td>Lukas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spagl</td>
<td>Bernhard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehner</td>
<td>Tobias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anto Akkara</td>
<td>Francis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Armbrüster</td>
<td>Felix</td>
<td></td>
<td>G. Wimmer</td>
<td></td>
</tr>
<tr>
<td>Rajmohan</td>
<td>Vivek</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babazadeh</td>
<td>Farsad</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchale</td>
<td>Sujay</td>
<td>Sourabh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauter</td>
<td>Florian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganisan</td>
<td>Rajalekshmi</td>
<td>Ramkumar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rost</td>
<td>Sebastian</td>
<td>Jan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qazi</td>
<td>Farhan</td>
<td>Hussain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karundevi</td>
<td>S. Gounder</td>
<td>Shammu-</td>
<td>Kumar</td>
<td></td>
</tr>
<tr>
<td>Skaria</td>
<td>Amal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lunghamer</td>
<td>Stefan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katamar</td>
<td>Shreedhar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berghammer</td>
<td>Michael</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigrüner</td>
<td>Matthias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nak</td>
<td>Ganesh</td>
<td>Anun</td>
<td></td>
<td>S. Puntigam</td>
</tr>
<tr>
<td>Prakash</td>
<td>Likith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sekar</td>
<td>Harharas-</td>
<td>udhan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmadi</td>
<td>Hamidezza</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diwakar</td>
<td>Saurabh</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nachname</td>
<td>Vorname</td>
<td>Erstprüfer</td>
<td>Zweitprüfer</td>
<td>Thema</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Gulhane</td>
<td>Piyush</td>
<td>Prof. Buttinger</td>
<td>Prof. Wagner</td>
<td>CFD Simulation of a small Wind Turbino Test Bench in the University Laboratory</td>
</tr>
<tr>
<td>Eser</td>
<td>Seray</td>
<td>Prof. Müller</td>
<td>Herr Ragai</td>
<td>Electric Assisted Sintering of Fe Powder</td>
</tr>
<tr>
<td>Wohlers</td>
<td>Jan</td>
<td>Prof. Schell</td>
<td>Prof. Mysliwetz</td>
<td>Entwicklung der Firmware und Nützlerschnittstelle eines konfigurierten KFZ-Netzsteckers zur Integration PC-basierter Systeme in Fahrzeuge</td>
</tr>
<tr>
<td>Frey</td>
<td>Michael</td>
<td>Prof. Schitten-helm</td>
<td>Prof. Perschl</td>
<td>Entwicklung eines automatisierten Softwaretests für die Interaktion des Antriebs MOVIGEAR-DFC (Powerlink/CA 402) mit der PLCopen Bibliothek von B & R</td>
</tr>
<tr>
<td>Jörg</td>
<td>Josef</td>
<td>Prof. Stichler</td>
<td>Prof. Thurner</td>
<td>Analyse von passiver Intermodulation in Basis-stationen unter Verwendung des Common Public Interfaces</td>
</tr>
<tr>
<td>Kadam</td>
<td>Sachin</td>
<td>Prof. Schinagl</td>
<td>Prof. Reuter</td>
<td>Artefact development for analyzing and validation of test setup method for Luggage Retention Test (ECE R 17)</td>
</tr>
<tr>
<td>Shea</td>
<td>Eric Robert</td>
<td>Prof. Perschl</td>
<td>Prof. Zentgraf</td>
<td>Realization and Validation of a 4-Stroke Diesel Dual Fuel Engine Model in Simulink for HL Controller Development and Analysis</td>
</tr>
<tr>
<td>Kachhadiya</td>
<td>Mayur</td>
<td>Prof. Perschl</td>
<td>Prof. Versen</td>
<td>Entwicklung einer Akku-Versorgung mit "Wireless Charging" für ein mobiles Industrierät</td>
</tr>
<tr>
<td>von Külmer</td>
<td>Mario</td>
<td>Prof. Versen</td>
<td>Prof. Meierlohr</td>
<td>Entwicklung eines Prüfstands zur Messung des elektrischen Oberflächenkontaktwiderstands von Steckersystemen im Automobil</td>
</tr>
<tr>
<td>Mistry</td>
<td>Naumil</td>
<td>Prof. Meierlohr</td>
<td>Prof. Wagner</td>
<td>Initiation of Total Productive Maintenance for the new automated Series of downstream machining installation</td>
</tr>
<tr>
<td>Mann</td>
<td>Robin</td>
<td>Prof. Versen</td>
<td>Prof. Popp</td>
<td>Analyse und Optimierung einer Lichtwellenleitergekoppelten Messzelle in der Laserabsorptions-spektroskopie</td>
</tr>
<tr>
<td>Gruber</td>
<td>Anton</td>
<td>Prof. Thurner</td>
<td>Prof. Versen</td>
<td>Entwicklung einer universellen Schaltstellenkarte auf Basis eines programmierbaren Logikbausteins</td>
</tr>
<tr>
<td>Alur Nagaraja</td>
<td>Sreesha</td>
<td>Prof. Schinagl</td>
<td>Prof. Schroeter</td>
<td>Thermal aging effects on Interface property between molding compounds and leadframe</td>
</tr>
<tr>
<td>Öttl</td>
<td>Markus</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Entwicklung und Konstruktion eines konkurrenzfähigen Standard-Flachkontaktes für Automotive-Anwendungen im HV-Bereich</td>
</tr>
<tr>
<td>Küstner</td>
<td>Klaus</td>
<td>Prof. Müller</td>
<td>Dr. Raghai</td>
<td>Investigation von neck formation for electrical sintered metal powders</td>
</tr>
<tr>
<td>Eckart</td>
<td>Matthias</td>
<td>Prof. Hagl</td>
<td>Prof. Schinagl</td>
<td>Entwurf eines dynamischen 2D-Aktors</td>
</tr>
<tr>
<td>Güttner</td>
<td>Florian</td>
<td>Prof. Mysliwetz</td>
<td>Prof. Versen</td>
<td>Evaluierung eines Feldbus-Controllers zur zyklischen und azyklischen Datenübertragung mit Profinet IO</td>
</tr>
<tr>
<td>Pastötter</td>
<td>Jeremias</td>
<td>Prof. Seliger</td>
<td>Prof. Versen</td>
<td>Realisierung eines IIoT-Systems mit drahtloser Energieübertragung, Ladetechnologie und Nahfeldkommunikation</td>
</tr>
<tr>
<td>Belur Ven-</td>
<td>Akshay</td>
<td>Prof. Wagner</td>
<td>Prof. Meierlohr</td>
<td>Design of a lifting Mechanism for a Modular MultiLevel Converter Submodule</td>
</tr>
<tr>
<td>Obermaia</td>
<td>Monika</td>
<td>Prof. Karlinger</td>
<td>Prof. Müller</td>
<td>Aufzeigen von alternativen Verfahren zur Schweißung von Ports in medizinischen Beuteln</td>
</tr>
<tr>
<td>Hahnenmann</td>
<td>Martin</td>
<td>Prof. Perschl</td>
<td>Prof. Karlinger</td>
<td>Entwurf einer Anlagentechnik für einen innovativen Fiber Moulding Prozess</td>
</tr>
<tr>
<td>Lechner</td>
<td>Matthias</td>
<td>Prof. Thurner</td>
<td>Prof. Stichler</td>
<td>Analyse and implementetion of a direct RF predistortion approach for broadband signals</td>
</tr>
<tr>
<td>Stahl</td>
<td>Carolin</td>
<td>Prof. Meierlohr</td>
<td>Prof. Wagner</td>
<td>Zero Defect - Concept, Strategy and Implementation applied on the launch process in an automotive assembly plant in Thailand</td>
</tr>
<tr>
<td>Mirzahosseini</td>
<td>Farzaneh</td>
<td>Prof. Seliger</td>
<td>Prof. Versen</td>
<td>Creating a system for risk assessment Compliance in accordance with EMC directive 2014/30/EU, including the creation of an exemplified risk assessment</td>
</tr>
<tr>
<td>Mattheis</td>
<td>Sebastian</td>
<td>Prof. Meierlohr</td>
<td>Prof. Prasch</td>
<td>Machbarkeitsuntersuchung zur Automatisierung eines Klebeprozesses bei optischen Drehkupplungen</td>
</tr>
<tr>
<td>Krekemeyer</td>
<td>Markus</td>
<td>Prof. Muscat</td>
<td>Prof. Strübbe</td>
<td>Entwicklung von verarbeitungs- und anwendungsoptimierten Bio-Compounds unter Nutzung von biogenen Reststoffen</td>
</tr>
<tr>
<td>Rogge</td>
<td>Marian</td>
<td>Prof. Stahl</td>
<td>Prof. Mühlbauer</td>
<td>Automatische Anpassung und zeitliche Optimierung von digitalen Rezepten für den Einsatz in Julti Device Cooking</td>
</tr>
</tbody>
</table>
Veröffentlichungen 2019

Fachzeitschriften und Journale:

Zentgraf, Peter, Ein neues Verfahren zur Modellierung linearer Systeme, atp Magazin Transforming Automation, Ausgabe 11-12 2019, S. 78-91, 2019

Konferenzbeiträge:

S. Hummel, M. Schemme, P. Karlinger: Variotherme Temperierung für Organo-bleche, Plastverarbeiter 08/2019

Veröffentlichungen 2020

Konferenzbeiträge:

E. Dechant, N. Seliger, and R. Kennel, Design of a Low Multi-Loop Inductance Three Level Neutral Point Clamped Converter with GaN HEMTs, accepted for publication at ECCE 2020 - 12th Annual Energy Conversion Congress and Exposition, (Detroit, USA), Oct. 2020.

Jahresbericht der Fakultät
für Ingenieurwissenschaft 2019 – 2020

Herausgeber:
Technische Hochschule Rosenheim Technical University of Applied Sciences
Fakultät für Ingenieurwissenschaft
Hochschulstr. 1, 83024 Rosenheim
Telefon +49 8031 805-2300, Fax +49 8031 805-2302
www.th-rosenheim.de/holz.html

V.i.S.d.P. Prof. Heinrich Köster, Präsident
Redaktion: Dr.-Ing. Martin Versen, Dr. rer. nat. Markus Stichler, Kerstin Popp,
verantwortlich für die Beiträge sind jeweils die Autoren
Fotos/Grafiken: Sofern nicht anders angegeben ©Autoren/Hochschule Rosenheim
Fotos Titelbild: Bilder stammen aus den Beiträgen des Jahresberichts.
Bildquellen sind dort angegeben oder die jeweiligen Autoren
Konzept und Layout: BTC typographie4you, Brannenburg a. Inn
Stand: Dezember 2021

Alle Rechte vorbehalten. Alle Angaben ohne Gewähr