Transforming Traditional to Interactive Teaching

Elmar Junker, Claudia Schäfle, Silke Stanzel
Michaela Weber, Franziska Graupner
Department for Physics. TH Rosenheim.

Outline

◆ Background for the Change Process

◆ Methods PI / JiTT / Tutorials (McDermott)

◆ Our way

◆ Impacts
Background

- started with traditional lectures
 - like we were taught

- were unsatisfied with results
 - share similar attitudes → teaching team

- 2012 started changing to JiTT/PI/tutorials
 - learned from Christian Kautz, Peter Riegler, Cynthia Heiner

A dream …

Students
... arrive prepared to the lessons
... work continuously and actively during the lessons

Instructor
... knows students’ difficulties
Methods

Peer Instruction (PI): Procedure

Concept Question
- individual, anonymous answer

Peer Discussion Phase
- Discussion in peer-groups
- teacher listens to find misconcepts
- ensure correct comprehension

JITT (Just-In-Time-Teaching): Procedure

Self-study
- Study assignment & online pre-quiz

Classroom presence
- Lesson tailored to students' quiz answers and questions
- More ambitious online post-quiz
- Taking up of still open questions
Self-study Phase

Instructor:
- gives
 - learning objectives
 - study assignment
 - literature recommendations

Students:
- prepare self-study-unit (i.e. connect to subject)
- do online-quiz

Preparation of ‘lecture’ „Just-in-time“

Instructor:
- Evaluates answers of quiz (statistics)
 - abundance of missing right answers
 - abundance of wrong answers
 - answers on ‘question to ask a question’ (with e-mail feedback)
 → students tell what teacher should cover

- Prepares the classroom phase
 - lecturing parts
 - PI-phases
 - interactive phases
Classroom-presence Phase

Instructor:
- visualize central theme
- fast presenting the highlights, traditional lecturing part
 - *interwoven*: addressing students’ difficulties with the subject:
 - “I saw, many had problems with …“
- addressing questions and answers from students (from quiz & live):
- working through parts of the online-quiz

Students:
- Interacting with teacher: questioning and answering
- Peer Instruction discussions

⇒ much more lively teaching (20/40 instead of 2/40 voices in the room)

Our Way

Example of Choreography

Our Way

Obstacles and Solutions

- No affordable “Ready-made-materials” available like ‘Mastering Physics’
 - we develop our materials ourselves
 - materials are well adapted to (special) courses
 - we discover new misconcepts and wrong thinking
- There are formal restrictions about midterms and bonus systems
 - 3, 5 or 10 % bonus to end-of-term exams sufficient for high student motivation
- Only discussing student problems is not sufficient
 - presentation of chapter highlights interwoven with problems much better.
 - self-reliance and independency of students can be developed

⇒ successful results
Important Framing the active classroom

Important communication to students before & during teaching:

- Why study assignments?

- Use ‘lecture’ time more efficiently to…
 - … clarify understanding problems
 - … gain time for PI-questions
 - … activate students

- good ‘lecture’ preparation
 = good exam preparation

 ➔ i.e. learning to study

Framing Learning ≠ Comfort

- Learning Zone Model (Michl 2009)
 - Learning = Growing beyond Comfort Zone
 - but avoiding panic zone

Impacts
Examples of our findings

- FCI gain doubles 0.13 → 0.28
 - traditional vs. interactive
- 16% more exams passed at first possible date
 - traditional vs. interactive

Publication (Stanzel, Junker, Schäfle) PTEE-Proceedings Delft 2019
(PTEE= Physics Teaching in Engineering Education) [http://www.sefiphysics.be/conferences/index.html]

Summary

- Interactive Teaching and Learning is
 - .. more fun
 - .. more efficient
- Try it!
 - .. e.g. one interactive unit per month
 - .. asking and listening to the students is essential
 - Adapt to your personality as teacher and to your students
- JiTT saves times and gives room for PI.
- The classroom is your didactical lab! Experiment!

Publication (Graupner, Junker, Stanzel) Proceedings MINT-Symposium Nürnberg 2019
Download Oct 19: [https://www.diz-bayern.de/publikationen/dina-und-tagungsbaende]
Thanks for Joining
Our contacts

◆ www.th-rosenheim.de/pro-aktjv.html
 □ www.th-rosenheim.de/junker.html
 □ www.th-rosenheim.de/stanzel.html
 □ www.th-rosenheim.de/schaefle.html

Receiving national teaching award
‘Ars legendi-Fakultätenpreis Physik 2017”
Humboldt University Berlin 30.03.2017
(l.to r. E. Junker, S. Stanzel, C. Schäfle)