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Abstract 

This thesis is an extension of the method presented by Prof. Dr. Peter Zentgraf for modelling 

linear systems. Here, an effort has been made to extend it to multiple-input multiple-output 

systems. A transparent technique that simulates processes using input and output 

measurement data without the use of any complex optimization or iterative algorithms has 

been developed. The solution obtained using least squares technique is very simple and easy 

to understand. The main aim is to provide bachelor students of engineering with a tool to 

formulate transfer functions. 

The algorithm thus programmed using MATLAB has been tested for artificially generated 

erroneous measurement data and also for measurements obtained from a practical application 

at the university. Inclusion of dead times and estimation of initial conditions makes it ideal to 

be used for various range of applications such as stable and unstable systems with and without 

damping, open and closed loop systems. Over-integration, normalizing and/or zeroing of 

different coefficients adds more degrees of freedom to improve the model quality. 
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1 Introduction 

1.1 System Identification 

Nowadays developing mathematical models of systems play an important role in engineering 

related design tasks. Right from vibration suppression to process control a model of the 

control system is required. It helps to determine the system parameters and/or to simulate the 

behaviour of the control system so as to verify a certain desirable performance before actually 

using the controller in a real application. Thus, such models are useful for simulations, 

prediction and forecasting, state estimation and understanding and analysing system 

properties. There are two ways to derive these models, either from physical principles or 

based on experimentation. Laws of nature i.e., physical conservation laws are applied to the 

simplified technical processes in physical or theoretical modelling. This type of modelling can 

be very time-consuming and often the system parameters remain unknown. While in 

experimental modelling, mathematical models of dynamic systems are derived using 

measured experimental data and this process is known as system identification. 

The initial step in this process is to design experiments in an optimal way to obtain good 

experimental data. It also includes selection of measured variables and the choice of input 

signals. Then with trial and error as well as using the prior knowledge of the system (if 

available), a suitable model structure is chosen. In the next step, a cost function that reflects 

how well the model fits the experimental data is defined. Further, this cost function is 

optimised to estimate the numerical values of the model parameters present in the selected 

model structure. The optimisation process adjusts the simulated response of this experimental 

model structure to the measured response. The last step is to validate the model by testing it in 

search of any inadequacies and then deciding if it satisfies the necessary application needs. 

Various system identification techniques [1] present so far have one or more of the following 

characteristics: 

• They are applicable to only certain type of systems 

• They assume the system is in equilibrium position 

• They need complex mathematical optimization methods and/or iterative algorithms to 

determine the model parameters 

• They identify the unknown system parameters in terms of state-space models or discrete-

time z-transfer functions 

• They require special test signals and are used only for open loop systems 
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1.2 Motivation 

The complex mathematical optimization methods are usually not a part of the curriculum for 

the bachelor program in engineering sciences. Nor the concept of state-space modelling is 

introduced in the bachelor course of control engineering. Therefore, it becomes very difficult 

for these students to understand the system identification techniques from a theoretical 

perspective, and it ultimately becomes a hindrance to use them effectively. 

The primary motivation for this thesis is to provide bachelor students of engineering sciences, 

who are newly introduced to the subject of control engineering, with a simple, fast, and 

transparent method to formulate transfer functions of the control systems. 

1.3 Thesis Objectives 

1. Devise a mathematical procedure to model multiple-input multiple-output linear systems. 

2. Develop a MATLAB program for the derived identification procedure. 

3. Design multiple test cases for testing the complete MATLAB program. 

4. Develop an algorithm for parametric search of system dead times. 

5. Develop an optimization function to evaluate system dead times and compare the results 

with the parametric search. 

6. Test and analyze the identification procedure with a real system. 

7. Compare and analyze the identification results with MATLAB System Identification 

Toolbox. 
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2 Literature Review 

2.1 State-of-the-Art 

System identification problems [2] are usually characterized by the following set of selection 

choices: 

• The model structure to be selected 

• The input signals to be applied 

• The identification process to be used to calculate unknown model parameters 

• The method to assess the model quality 

• The validation process to scrutinize and gain confidence in the estimated model 

This gives rise to the following setup to approach system identification problems: 

 

 

Figure 1: Overview of system identification process 
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The state-of-the-art method [3] to solve system identification problems is the kernel-based 

regularization method. This method is inspired from machine learning and is first described 

by Pillonetto and De Nicolao in 2010. In the first step, a kernel (model structure) is selected 

that includes the conditions for actual estimation problem. The kernels are defined by basis 

functions in terms of splines that are used in continuous function approximation techniques. 

The kernel designs like stable spline (SS) kernel [4] and diagonal corelated (DC) kernel [5] 

are widely used to determine the underlying model structure in this method. These kernel 

designs are obtained by two systematic ways, either from perspective of system theory or 

machine learning, which can embed various types of prior knowledge about the system. Once 

the kernel structure is selected, the next step is known as tuning that estimates the 

hyperparameters. It has no knowledge about the system and hence is a pure estimation 

problem of statistical nature. This regularization technique provides non-integer model orders 

which overcomes the difficulty faced by traditional methods to find the best model orders. A 

detailed implementation of the kernel-based regularization method is given in Chen and Ljung 

[6]. 

2.2 Survey 

A short comparison is made between some identification methods used for linear time-

invariant systems [7], [8], [9]. After listing some of the important characteristics of these 

methods, they are rated as per their complexity: 

 

 

Figure 2: Comparison between some methods for linear time-invariant systems 

  

Method
Constrained Step-Based 

Realization

Nelder and Mead Simplex Method 

combined with frequency response

Direct Closed Loop Identification 

Method

Requirements

1. Stable System

2. Known Steady State Value

3. Real, stable, positive Eigen 

Values of estimates

4. No undershoot or overshoot of 

step response

5. Single Time Delay

1. Large measurement noises 1. System becomes exponentially 

stable after first step of 

identification

Identification Model State-Space  s-domain Transfer Function z-domainTransfer Function

System
1. SIMO

2. Stable System
MIMO

1. SISO

2. Unstable System

3. Non-minimum Phase

Type of Signal Step Response Any type of input signal Any type of input signal

Required data sets Large no. to average responses One One

Estimates Initial Conditions No No No

Estimates Dead Times No No No

Knowledge of placement of 

Poles and Zeros
Yes (only poles). Yes Yes

Complexity

(1 = Easy … 5 = Difficult)
4 3 5
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An approach in system identification was published by Prof. Dr. Peter Zentgraf [1] in 2019 

for modelling single-input single-output linear systems. This paper discussed the use of linear 

ODEs with constant coefficients, Laplace Transforms, and the method of Least Squares to 

maintain a simple and clear approach. It also highlighted the advantages of identifying the 

system directly in the time-continuous Laplace domain (s-domain) with a practical example. 

If initial identification in z-domain is done and then a re-transformation procedure, like Euler 

or Tustin procedure [10], is used to transform into s-domain, then the coefficients of the 

transfer function lose their physical meaning. The final solution derived from method of Least 

Squares, first given by Gauss [11], uses only two analytical equations. The technique uses 

integration, first used by Golubev and Horowitz [12], instead of derivatives in the s-domain to 

filter out the noise and to make the resulting signals more deterministic. Test results for two 

real systems showed that this method calculates initial conditions and dead time of the system 

and can be used widely to identify different types of systems. In this thesis, an extension to 

include multi-input multi-output systems with the same method is developed. 
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3 Development of Identification Procedure 

The primary objective is to determine the general system behaviour of the model from the 

measured data set of input signals 𝑢(𝑡) and output signals 𝑦(𝑡). Moreover, even for 

completely different input signals, this identified model should be able to predict the 

corresponding output behaviour without having to measure again. Therefore, for the sake of 

simplicity and without limiting the general validity, linear time-invariant ordinary differential 

equations (ODEs) are used. It is necessary that the input signals have enough dynamics so that 

the derivatives of input and output signals are not zero over a large period. Only then the 

coefficients of the ODE can be estimated with a numerical certainty. Also, the measurement 

errors are assumed to be zero-mean random numbers. The procedure described in this section 

is also easy to understand because it is very clearly derived with the help of Laplace 

transformation and Least Squares. 

3.1 Pre-requisites 

To understand the identification procedure from section 3.2 more effectively, only the 

theoretical concepts of Linear ODEs, Laplace transformations and the method of Least 

Squares from engineering mathematics are necessary. Therefore, a short review of these pre-

requisites in relation with dynamic systems is provided in this section. 

3.1.1 Linear Ordinary Differential Equations 

The dynamic behaviour of a linear time-invariant system with an input variable 𝑢(𝑡) and 

output variable 𝑦(𝑡) can be described in the form of an ODE as follows: 

𝑏0. 𝑦(𝑡) + 𝑏1. �̇�(𝑡) + 𝑏2. �̈�(𝑡) + ⋯+ 𝑏𝑛. 𝑦
(𝑛)(𝑡) = 

𝑎0. 𝑢(𝑡) + 𝑎1. �̇�(𝑡) + 𝑎2. �̈�(𝑡) + ⋯+ 𝑎𝑚. 𝑢
(𝑚)(𝑡) 

(1) 

3.1.2 Laplace and Inverse Laplace Theorems 

The general Laplace differentiation theorem is used for the transformation of input and output 

signals into Laplace domain. It is given by the following equation: 

𝑓(𝑛)(𝑡) = 𝑠𝑛. 𝐹(𝑠) −∑𝑓(𝑘)(0). 𝑠𝑛−𝑘−1
𝑛−1

𝑘=0

 

(2) 

Similarly, the inverse transformation of input and output signals from the Laplace domain into 

the time domain is given by the following integration theorem: 

1

𝑠(𝑛)
. 𝐹(𝑠) = 𝑓(−𝑛)(𝑡) 

(3) 
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3.1.3 Least Squares 

The method of least squares from Gauss obtains an approximate solution to an 

overdetermined system of equations by minimizing the sum of the squares of the residuals 

from each equation. The general representation of the system of equations is as follows: 

�̃� = 𝐻. 𝑥 + 𝑒 

(4) 

where: �̃� = [�̃�1 �̃�2 ⋯ �̃�𝑚]𝑇 : 𝑚 × 1 column vector of measurements 

 𝑥 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]𝑇 : 𝑛 × 1 column vector with unknown model parameters 

 𝑒 = [𝑒1 𝑒2 ⋯ 𝑒𝑚]𝑇 : 𝑚 × 1 column vector with unknown estimation errors 

 𝐻 =

[
 
 
 
−ℎ1

𝑇 −

−ℎ2
𝑇 −
⋮

−ℎ𝑚
𝑇 −]

 
 
 
   : 𝑚 × 𝑛 Base matrix of the known base functions 

For 𝐻. 𝑥 to be in good coincidence with the measurement values �̃�, 𝑒 should be as small as 

possible. This is achieved by minimizing the square-sum 𝐽(𝑥) with respect to 𝑥 where: 

𝐽(𝑥) =
1

2
. 𝑒𝑇(𝑥). 𝑒(𝑥) 

(5) 

The unknown model parameters can then be found out using the equation given below: 

�̂� = (𝐻𝑇𝐻)−1. 𝐻𝑇 . �̃� 

(6) 
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3.2 Mathematical Description 

Before proceeding into the extension of identification procedure to multi-input multi-output 

(MIMO) systems, it is necessary to review the equations of this procedure for single-input 

single-output (SISO) systems presented in section 3.2.1 (refer [1] for details). 

3.2.1 Single-Input Single-Output Systems 

A third order ODE is taken into consideration by substituting 𝑚 = 0, 𝑛 = 3 and 𝑏3 = 1 in 

equation (1). 

𝑏0. 𝑦(𝑡) + 𝑏1. �̇�(𝑡) + 𝑏2. �̈�(𝑡) + 1. 𝑦(𝑡) = 𝑎0. 𝑢(𝑡) 
(7) 

The Laplace transforms are calculated with the help of equation (2) and 𝑌(𝑠) is sorted which 

yields the following relation between the output variable, input variable and the initial 

conditions: 

𝑌(𝑠) =
𝑎0

𝑠3 + 𝑏2. 𝑠2 + 𝑏1. 𝑠 + 𝑏0
𝑈(𝑠)

⏟                  
𝑃𝑎𝑟𝑡 1

+ 

+
𝑠2. 𝑦(0) + 𝑠. (𝑏2. 𝑦(0) + �̇�(0)) + 𝑏1. 𝑦(0) + 𝑏2. �̇�(0) + �̈�(0)

𝑠3 + 𝑏2. 𝑠2 + 𝑏1. 𝑠 + 𝑏0⏟                                      
𝑃𝑎𝑟𝑡 2

 

(8) 

In the next step, the derivatives of the ODE are converted into integrals by multiplying with 
1

𝑠3
 

and then taking the Laplace inverse using equation (3). Further, the product of two unknown 

variables is converted into a single intermediate unknown variable for the applicability of 

Least Squares. The equation is as shown: 

𝑦(𝑡) − 𝑦(0) + 𝑏2. (𝑦𝑖(𝑡) − 𝑡. 𝑦(0)) + 𝑏1 (𝑦𝑖𝑖(𝑡) −
1

2
. 𝑡2. 𝑦(0)) + 𝑏0. 𝑦𝑖𝑖𝑖(t) 

=
1

2
. 𝑡2. 𝑦20 + 𝑡. 𝑦10 + 𝑎0𝑢𝑖𝑖𝑖(t) 

(9) 
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This equation is generalized for sampling times 𝑡 = [𝑡1 𝑡2  … 𝑡𝑞] and rearranged to the form 

of Least Squares. 

[

𝑦(𝑡1) − 𝑦(0)
⋮

𝑦(𝑡𝑞) − 𝑦(0)
]

⏟          
�̃�

= 

[
 
 
 
 𝑡1. 𝑦(0) − 𝑦𝑖(𝑡1)

⋮
𝑡𝑛. 𝑦(0) − 𝑦𝑖(𝑡𝑞)

1

2
. 𝑡1
2. 𝑦(0) − 𝑦𝑖𝑖(𝑡1)

⋮
1

2
. 𝑡𝑞
2. 𝑦(0) − 𝑦𝑖𝑖(𝑡𝑞)

−𝑦𝑖𝑖𝑖(𝑡1)
⋮

−𝑦𝑖𝑖𝑖(𝑡𝑞)

𝑢𝑖𝑖𝑖(𝑡1)
⋮

𝑢𝑖𝑖𝑖(𝑡𝑞)

1

2
. 𝑡1
2 𝑡1

⋮ ⋮
1

2
. 𝑡𝑞
2 𝑡𝑞]

 
 
 
 

⏟                                                

.

𝐻
[
 
 
 
 
 
𝑏2
𝑏1
𝑏0
𝑎0
𝑦20
𝑦10]
 
 
 
 
 

⏟
𝑥

 

(10) 

Once the unknown coefficients in 𝑥 are obtained by Least Squares, then the remaining initial 

conditions can be determined from the following linear system of equations: 

[
𝑦20
𝑦10
] = [

𝑏2 1
1 0

] [
�̇�(0)
�̈�(0)

] 

(11) 

Therefore, the generalized equations for an ODE of order n as given in equation (1) are: 

[

𝑦(𝑡1) − 𝑦(0)
⋮

𝑦(𝑡𝑞) − 𝑦(0)
]

⏟          
�̃�

= 

[
 
 
 
 
 
1

1!
. 𝑡1. 𝑦(0) − 𝑦𝑖(𝑡1)…

1

(𝑛 − 1)!
. 𝑡1
𝑛−1. 𝑦(0) − 𝑦𝑖𝑖…𝑖⏟

𝑛−1

(𝑡1) −𝑦𝑖𝑖…𝑖⏟
𝑛

(𝑡1) 𝑢𝑖𝑖…𝑖⏟
𝑛

(𝑡1)…𝑢𝑖𝑖…𝑖⏟
𝑛−𝑚

(𝑡1)

⋮ ⋮ ⋮
1

1!
. 𝑡𝑞 . 𝑦(0) − 𝑦𝑖(𝑡𝑞)…

1

(𝑛 − 1)!
. 𝑡𝑞
𝑛−1. 𝑦(0) − 𝑦𝑖𝑖…𝑖⏟

𝑛−1

(𝑡𝑞) −𝑦𝑖𝑖…𝑖⏟
𝑛

(𝑡𝑞) 𝑢𝑖𝑖…𝑖⏟
𝑛

(𝑡𝑞)…𝑢𝑖𝑖…𝑖⏟
𝑛−𝑚

(𝑡𝑞)

1

(𝑛 − 1)!
. 𝑡1
𝑛−1…

1

1!
. 𝑡1

⋮
1

(𝑛 − 1)!
. 𝑡𝑞
𝑛−1…

1

1!
. 𝑡𝑞
]
 
 
 
 
 

⏟                                                                            
𝐻

.

[
 
 
 
 
 
 
 
 
𝑏𝑛−1
⋮
𝑏0
𝑎0
⋮
𝑎𝑚

𝑦(𝑛−1)0
⋮
𝑦10 ]

 
 
 
 
 
 
 
 

⏟      
𝑥

 

(12) 

[

𝑦(𝑛−1)0
⋮
𝑦20
𝑦10

] = [

𝑏2
⋮

𝑏𝑛−1
1

…
𝑏𝑛−1
1
0

𝑏𝑛−1
1
0
0

1
0
0
0

] [

�̇�(0)
�̈�(0)
⋮

𝑦(𝑛−1)(0)

] 

(13) 
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3.2.2 Extension to Multi-Input Multi-Output Systems 

The mathematical development to achieve the primary objective of this thesis is based on 

similar lines of SISO. A dynamic system with measured input signals (𝑢1(𝑡), 𝑢2(𝑡), … and so 

on) and measured output signals (𝑦1(𝑡), 𝑦2(𝑡), … and so on) is considered. The identification 

method is developed initially for multiple-input single-output (MISO) system, and then it is 

extended for other outputs. 

Without limiting the general validity, the linear time-invariant ODE considered for the 

dynamic behaviour of the MISO system can be described as follows: 

𝑏0. 𝑦1(𝑡) + 𝑏1. �̇�1(𝑡) + 𝑏2. �̈�1(𝑡) + ⋯+ 𝑏𝑛. 𝑦1
(𝑛)(𝑡) = 

𝑎1. 𝑢1(𝑡) + 𝑎𝑝+1. �̇�1(𝑡) + 𝑎2𝑝+1. �̈�1(𝑡) + ⋯+ 𝑎𝑚𝑝+1. 𝑢1
(𝑚)(𝑡)  + 

          ⋮                      ⋮                       ⋮                                     ⋮     

+ 𝑎𝑝. 𝑢𝑝(𝑡) + 𝑎2𝑝. �̇�𝑝(𝑡) + 𝑎3𝑝. �̈�𝑝(𝑡) + ⋯+ 𝑎(𝑚+1)𝑝. 𝑢𝑝
(𝑚)(𝑡) 

(14) 

Non-linear systems, where the unknown model parameters do not occur linearly, too can be 

transformed into a linear form by an off-integration or by replacement with intermediate 

variables and then this method with linear ODEs could be applied. Once the intermediate 

variables are calculated, they could be resolved to obtain the unknown non-linearly occurring 

model parameters (explained further in this section). 

Again, without restriction of general validity, the further development is carried out using a 

third order ODE obtained by substituting 𝑚 = 0, 𝑛 = 3 and 𝑝 = 2 in equation (14). Also, any 

one of the coefficients of the ODE can be freely chosen to be normalized or set to any other 

value and ideally it would not have any effect on the ODE. But due to measurement errors, 

the results change, and more number of possible solutions could be obtained (the derivation 

for this hidden degree of freedom is presented in section 3.3.2). Here, the coefficient 𝑏3 is 

arbitrarily chosen and set to one. Therefore, the number of unknown model parameters is 

reduced by one. 

𝑏0. 𝑦1(𝑡) + 𝑏1. �̇�1(𝑡) + 𝑏2. �̈�1(𝑡) + 1. 𝑦1(𝑡) = 𝑎1. 𝑢1(𝑡)+𝑎2. 𝑢2(𝑡) 
(15) 

This time domain ODE is transformed into the Laplace domain by applying Laplace 

transforms from equation (2). During this transformation, care should be taken with the initial 

values of input and output signals and its derivatives. At the start of an actual process, the 

initial values of the output signal and its derivatives 𝑦1(0), �̇�1(0), �̈�2(0) would not 

necessarily be zero (i.e., when not started from equilibrium position). They could also have a 

non-zero value for 𝑡 < 0 because they represent the state of system up to time 𝑡 = 0 (i.e., 

when not started from rest position). As the effects till time 𝑡 = 0 are incorporated into initial 

values of output and its derivatives, hence without limiting the general validity, the initial 

values of the input signal and its derivatives are assumed to have zero value for 𝑡 < 0. 
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Accordingly, the following Laplace transformations are obtained: 

𝑏0. 𝑦1(𝑡)
ℒ
→ 𝑏0. 𝑌1(𝑠) 

(16) 

𝑏1. �̇�1(𝑡)
ℒ
→ 𝑏1. (𝑠. 𝑌1(𝑠) − 𝑦1(0)) 

(17) 

𝑏2. �̈�1(𝑡)
ℒ
→ 𝑏2. (𝑠

2. 𝑌1(𝑠) − 𝑠. 𝑦1(0) − �̇�1(0)) 
(18) 

1. 𝑦1(𝑡)
ℒ
→ 𝑠3. 𝑌1(𝑠) − 𝑠

2. 𝑦1(0) − 𝑠. �̇�1(0) − �̈�2(0) 
(19) 

𝑎1. 𝑢1(𝑡)
ℒ
→ 𝑎1. 𝑈1(𝑠) 

(20) 

𝑎2. 𝑢2(𝑡)
ℒ
→ 𝑎2. 𝑈2(𝑠) 

(21) 

The equations from (16) to (21) are substituted in equation (15) to obtain the following 

equation: 

𝑏0. 𝑌1(𝑠) + 𝑏1. (𝑠. 𝑌1(𝑠) − 𝑦1(0)) + 𝑏2. (𝑠
2. 𝑌1(𝑠) − 𝑠. 𝑦1(0) − �̇�1(0)) 

+𝑠3. 𝑌1(𝑠) − 𝑠
2. 𝑦1(0) − 𝑠. �̇�1(0) − �̈�2(0) = 𝑎1. 𝑈1(𝑠) + 𝑎2. 𝑈2(𝑠) 

(22) 

The terms are rearranged and sorted for 𝑌1(𝑠) which gives the following equation: 

𝑌1(𝑠) =
𝑎1

𝑠3 + 𝑏2. 𝑠2 + 𝑏1. 𝑠 + 𝑏0
𝑈1(𝑠)

⏟                  
𝑃𝑎𝑟𝑡 1

+
𝑎2

𝑠3 + 𝑏2. 𝑠2 + 𝑏1. 𝑠 + 𝑏0
𝑈2(𝑠)

⏟                  
𝑃𝑎𝑟𝑡 2

 

+
𝑠2. 𝑦1(0) + 𝑠. (𝑏2. 𝑦1(0) + �̇�1(0)) + 𝑏1. 𝑦1(0) + 𝑏2. �̇�1(0) + �̈�1(0)

𝑠3 + 𝑏2. 𝑠2 + 𝑏1. 𝑠 + 𝑏0⏟                                          
𝑃𝑎𝑟𝑡 3

 

(23) 

Therefore, equation (23) can be used to simulate the system with non-zero initial conditions. 

But if the initial conditions, 𝑦1(0), �̇�1(0), �̈�2(0), are zero, then the value of 𝑃𝑎𝑟𝑡 3 is zero 

and the output is only impacted by the input signals 𝑈1(𝑠) and 𝑈2(𝑠) through the transfer 

function in 𝑃𝑎𝑟𝑡 1 and 𝑃𝑎𝑟𝑡 2 respectively. 
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Now, the equation (22) has the highest power of 𝑠 as 3, so to avoid all the derivatives in time 

domain, it is multiplied by 
1

𝑠3
. A product with higher order is also possible and further 

solutions could be obtained (the derivation for this hidden degree of freedom is presented in 

section 3.3.1). Thus, the entire equation is converted into an integral relationship which is 

now easier to solve and is sorted by the unknown model parameters as follows: 

(𝑌1(𝑠) −
1

𝑠
. 𝑦1(0) −

1

𝑠2
. �̇�1(0) −

1

𝑠3
. �̈�2(0)) + 𝑏2. (

1

𝑠
. 𝑌1(𝑠) −

1

𝑠2
. 𝑦1(0)) 

+𝑏2. �̇�1(0) (−
1

𝑠3
) + 𝑏1. (

1

𝑠2
. 𝑌1(𝑠) −

1

𝑠3
. 𝑦1(0)) + 𝑏0.

1

𝑠3
. 𝑌1(𝑠) 

= 𝑎1.
1

𝑠3
. 𝑈1(𝑠) + 𝑎2.

1

𝑠3
. 𝑈2(𝑠) 

(24) 

The method of Least Squares cannot be applied directly when there is a product of two 

unknowns (here, 𝑏2. 𝑦1̇(0)). Hence intermediate variables are needed to be introduced to keep 

the equation in the correct form for Least Squares. Here 𝑦120, 𝑦110 are used: 

(𝑌1(𝑠) −
1

𝑠
. 𝑦1(0)) + 𝑏2. (

1

𝑠
. 𝑌1(𝑠) −

1

𝑠2
. 𝑦1(0)) + 𝑏1. (

1

𝑠2
. 𝑌1(𝑠) −

1

𝑠3
. 𝑦1(0)) 

+𝑏0.
1

𝑠3
. 𝑌1(𝑠) − (𝑏2. �̇�1(0) + �̈�2(0)⏟          

=:𝑦120

) .
1

𝑠3
− �̇�1(0)⏟  
=:𝑦110

.
1

𝑠2
 

= 𝑎1.
1

𝑠3
. 𝑈1(𝑠) + 𝑎2.

1

𝑠3
. 𝑈2(𝑠) 

(25) 

After calculation of 𝑏2,  𝑦120 and 𝑦110 the initial conditions can be recalculated again 

(explained further in this section). 𝑦1(0) is assumed to be known. If in case that’s not true 

then, additional intermediate variables are needed to be introduced where 𝑦1(0) has a product 

with another unknown parameter. 
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The equation (25) is transformed back into time domain using inverse Laplace transform from 

equation (3). The inverse Laplace for the functions with time (𝑡 ≥ 0) is given by: 

1

𝑠
. 𝑦1(0)

ℒ−1

→ 𝑦1(0) 

(26) 

1

𝑠2
. 𝑦1(0)

ℒ−1

→ 𝑡. 𝑦1(0) 

(27) 

1

𝑠3
. 𝑦1(0)

ℒ−1

→ 
𝑡2

2
. 𝑦1(0) 

(28) 

Usually, the measurement data is split for estimation and verification. Hence, it is efficient to 

use two different time coordinates, 𝑡 for measured data set and �̃� for the estimation data set. It 

is considered that at time instance 𝑡 = 𝑡1, the estimation starts and hence the variable �̃� = 0 

which also means �̃� = 𝑡 − 𝑡1. This is helpful since the contribution of lower limit of 

integration is zero and it decreases the number of terms in the procedure. Moreover, the 

system simulation should also start at time zero seconds. The output signals 𝑦(𝑡) and the 

input signals 𝑢(𝑡) are changed to 𝑦(�̃�) and 𝑢(�̃�) respectively. 

𝑦1(�̃�) − 𝑦1(0) + 𝑏2. (𝑦1𝑖(�̃�) − �̃�. 𝑦1(0)) + 𝑏1 (𝑦1𝑖𝑖(�̃�) −
1

2
. �̃�2. 𝑦1(0)) + 𝑏0. 𝑦1𝑖𝑖𝑖(�̃�) 

=
1

2
. �̃�2. 𝑦120 + �̃�. 𝑦110 + 𝑎1𝑢1𝑖𝑖𝑖(�̃�) + 𝑎2𝑢2𝑖𝑖𝑖(�̃�) 

(29) 

This equation is shown below for different sampling times �̃� = [𝑡1̃ 𝑡2̃ … 𝑡�̃�] in matrix 

form: 

[

𝑦1(�̃�1) − 𝑦1(0)
⋮

𝑦1(�̃�𝑞) − 𝑦1(0)
] + [

𝑦1𝑖(�̃�1) − �̃�1𝑦1(0)
⋮

𝑦1𝑖(�̃�𝑞) − �̃�𝑞𝑦1(0)
] . 𝑏2 +

[
 
 
 
 𝑦1𝑖𝑖(�̃�1) −

1

2
. �̃�1
2. 𝑦1(0)

⋮

𝑦1𝑖𝑖(�̃�𝑞) −
1

2
. �̃�𝑞
2. 𝑦1(0)]

 
 
 
 

. 𝑏1 + [
−𝑦1𝑖𝑖𝑖(�̃�1)

⋮
−𝑦1𝑖𝑖𝑖(�̃�𝑞)

] . 𝑏0 = 

1

2
. [
�̃�1
2

⋮
�̃�𝑞
2
] . 𝑦120 + [

�̃�1
⋮
�̃�𝑞

] . 𝑦110 + [
𝑢1𝑖𝑖𝑖(�̃�1)
⋮

𝑢1𝑖𝑖𝑖(�̃�𝑞)
] . 𝑎1 + [

𝑢2𝑖𝑖𝑖(�̃�1)
⋮

𝑢2𝑖𝑖𝑖(�̃�𝑞)
] . 𝑎2 

(30) 
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This equation is rearranged to a suitable form, to be solved by Least Squares as shown below: 

[

𝑦1(�̃�1) − 𝑦1(0)
⋮

𝑦1(�̃�𝑞) − 𝑦1(0)
]

⏟          
�̃�

= 

[
 
 
 
 �̃�1. 𝑦1(0) − 𝑦1𝑖(�̃�1)

⋮
�̃�𝑞. 𝑦1(0) − 𝑦1𝑖(�̃�𝑞)

1

2
. �̃�1
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�1)

⋮
1

2
. �̃�𝑞
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�𝑞)

−𝑦1𝑖𝑖𝑖(�̃�1)
⋮

−𝑦1𝑖𝑖𝑖(�̃�𝑞)

𝑢1𝑖𝑖𝑖(�̃�1)
⋮

𝑢1𝑖𝑖𝑖(�̃�𝑞)

𝑢2𝑖𝑖𝑖(�̃�1)
⋮

𝑢2𝑖𝑖𝑖(�̃�𝑞)

1

2
. �̃�1
2

⋮
1

2
. �̃�𝑞
2

�̃�1
⋮
�̃�𝑞
]
 
 
 
 

⏟                                                          
𝐻 [

 
 
 
 
 
 
𝑏2
𝑏1
𝑏0
𝑎1
𝑎2
𝑦120
𝑦110]

 
 
 
 
 
 

⏟  
𝑥

 

(31) 

The unknown model parameters in equation (31) are to be found out so that �̃� and 𝐻. 𝑥 are as 

equal as possible. By adding an error vector 𝑒 for non-modellable random measurement errors 

as well as modelling errors, this can be solved by the Method of Least Squares (refer section 

3.1.3). 

Once the unknown coefficients and intermediate variables are obtained by Least Squares, then 

the initial conditions can be calculated back from the intermediate variables by inverting the 

following linear system of equation: 

[
𝑦120
𝑦110

] = [
𝑏2 1
1 0

] [
�̇�1(0)
�̈�1(0)

] 

(32) 
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Further, this procedure is generalised for an ODE with output and input signals with order 𝑛 

and 𝑚 respectively and with 𝑝 input signals. The two analytical equations obtained are as 

follows: 

[

𝑦1(�̃�1) − 𝑦1(0)
⋮

𝑦1(�̃�𝑞) − 𝑦1(0)
]

⏟          
�̃�

= 

[
 
 
 
 
 
1

1!
. �̃�1. 𝑦1(0) − 𝑦1𝑖(�̃�1)…

1

(𝑛 − 1)!
. �̃�1
𝑛−1. 𝑦1(0) − 𝑦1𝑖𝑖…𝑖⏟

𝑛−1

(�̃�1) −𝑦1𝑖𝑖…𝑖⏟  
𝑛

(�̃�1) 𝑢1…𝑝𝑖…𝑖𝑖⏟
𝑛

(�̃�1)…𝑢1…𝑝𝑖…𝑖𝑖⏟
𝑛−𝑚

(�̃�1)

⋮ ⋮ ⋮
1

1!
. �̃�𝑞 . 𝑦1(0) − 𝑦1𝑖(�̃�𝑞)…

1

(𝑛 − 1)!
. �̃�𝑞
𝑛−1. 𝑦1(0) − 𝑦1𝑖𝑖…𝑖⏟

𝑛−1

(�̃�𝑞) −𝑦1𝑖𝑖…𝑖⏟
𝑛

(�̃�𝑞) 𝑢1…𝑝𝑖…𝑖𝑖⏟    
𝑛

(�̃�𝑞)…𝑢1…𝑝𝑖…𝑖𝑖⏟
𝑛−𝑚

(�̃�𝑞)

1

(𝑛 − 1)!
. �̃�1
𝑛−1…

1

1!
. �̃�1

⋮
1

(𝑛 − 1)!
. �̃�𝑞
𝑛−1…

1

1!
. �̃�𝑞
]
 
 
 
 
 

⏟                                                                                  
𝐻

. 

[
 
 
 
 
 
 
 
 
𝑏𝑛−1
⋮
𝑏0
𝑎1
⋮

𝑎(𝑚+1).𝑝
𝑦1(𝑛−1)0
⋮
𝑦110 ]

 
 
 
 
 
 
 
 

⏟      
𝑥

 

(33) 

[

𝑦1(𝑛−1)0
⋮
𝑦120
𝑦110

] = [

𝑏2
⋮

𝑏𝑛−1
1

…
𝑏𝑛−1
1
0

𝑏𝑛−1
1
0
0

1
0
0
0

] [

�̇�(0)
�̈�(0)
⋮

𝑦(𝑛−1)(0)

] 

(34) 

In a similar way, this procedure can be extended to the remaining outputs (𝑦2(𝑡), 𝑦3(𝑡) and so 

on) and the coefficients of ODE and the initial conditions could be found out for the same. 
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3.3 Derivation of Additional Functionalities 

Some hidden degrees of freedom were discussed in the previous section 3.2.2. A more 

detailed theoretical procedure of some additional functionalities along with these hidden 

degrees of freedom is presented here in this section. These additional functionalities can help 

to improve the model quality. 

3.3.1 Over-Integration 

Consider the same ODE used to present the mathematical procedure from the previous 

section. The equation (22) is now multiplied by a higher order, say 
1

𝑠4
 instead of 

1

𝑠3
. This not 

only avoids all the derivatives in time domain but also integrates the equation one more time. 

(
1

𝑠
. 𝑌1(𝑠) −

1

𝑠2
. 𝑦1(0) −

1

𝑠3
. �̇�1(0) −

1

𝑠4
. �̈�2(0)) + 𝑏2. (

1

𝑠2
. 𝑌1(𝑠) −

1

𝑠3
. 𝑦1(0)) 

+𝑏2. �̇�1(0) (−
1

𝑠4
) + 𝑏1. (

1

𝑠3
. 𝑌1(𝑠) −

1

𝑠4
. 𝑦1(0)) + 𝑏0.

1

𝑠4
. 𝑌1(𝑠) 

= 𝑎1.
1

𝑠4
. 𝑈1(𝑠) + 𝑎2.

1

𝑠4
. 𝑈2(𝑠) 

(35) 

Now, the same procedure is followed, firstly the product of two unknowns is substituted with 

intermediate variables and then inverse Laplace transformation is performed. The equation is 

rearranged to the following form: 

[

𝑦1𝑖(�̃�1) − �̃�1. 𝑦1(0)
⋮

𝑦1𝑖(�̃�𝑞) − �̃�𝑞. 𝑦1(0)
]

⏟            
�̃�

= 

[
 
 
 
 
1

2
. �̃�1
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�1)

⋮
1

2
. �̃�𝑞
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�𝑞)

1

3!
. �̃�1
3. 𝑦1(0) − 𝑦1𝑖𝑖𝑖(�̃�1)

⋮
1

3!
. �̃�𝑞
3. 𝑦1(0) − 𝑦1𝑖𝑖𝑖(�̃�𝑞)

−𝑦1𝑖𝑖𝑖𝑖(�̃�1)
⋮

−𝑦1𝑖𝑖𝑖𝑖(�̃�𝑞)

𝑢1𝑖𝑖𝑖𝑖(�̃�1)
⋮

𝑢1𝑖𝑖𝑖𝑖(�̃�𝑞)

𝑢2𝑖𝑖𝑖𝑖(�̃�1)
⋮

𝑢2𝑖𝑖𝑖𝑖(�̃�𝑞)

1

3!
. �̃�1
3

⋮
1

3!
. �̃�𝑞
3

1

2
. �̃�1
2

⋮
1

2
. �̃�𝑞
2
]
 
 
 
 

⏟                                                                
𝐻 [

 
 
 
 
 
 
𝑏2
𝑏1
𝑏0
𝑎1
𝑎2
𝑦120
𝑦110]

 
 
 
 
 
 

⏟  
𝑥

 

(36) 

Once the unknown model parameters in 𝑥 are calculated using Least Squares, the initial 

conditions can be found out using the same equation (32). Further, the system behaviour can 

be simulated using the equation (23) in terms of transfer function. Therefore, in general an 

ODE with output order 𝑛 can be over-integrated to obtain multiple possible solutions. 
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3.3.2 Normalizing Different Denominator Coefficients 

Here, in the third order ODE, (which is obtained by substituting 𝑚 = 0, 𝑛 = 3 and 𝑝 = 2 in 

equation (14)), 𝑏2 (instead of 𝑏3) is arbitrarily chosen and set to one. 

𝑏0. 𝑦1(𝑡) + 𝑏1. �̇�1(𝑡) + 1. �̈�1(𝑡) + 𝑏3. 𝑦1(𝑡) = 𝑎1. 𝑢1(𝑡)+𝑎2. 𝑢2(𝑡) 
(37) 

The Laplace transformations are carried out to give the following equation: 

𝑏0. 𝑌1(𝑠) + 𝑏1. (𝑠. 𝑌1(𝑠) − 𝑦1(0)) + 1. (𝑠
2. 𝑌1(𝑠) − 𝑠. 𝑦1(0) − �̇�1(0)) 

+𝑏3. (𝑠
3. 𝑌1(𝑠) − 𝑠

2. 𝑦1(0) − 𝑠. �̇�1(0) − �̈�2(0)) = 𝑎1. 𝑈1(𝑠) + 𝑎2. 𝑈2(𝑠) 

(38) 

The terms are rearranged and sorted for 𝑌1(𝑠) as shown below: 

𝑌1(𝑠) =
𝑎1

𝑏3. 𝑠3 + 1. 𝑠2 + 𝑏1. 𝑠 + 𝑏0
𝑈1(𝑠)

⏟                    
𝑃𝑎𝑟𝑡 1

+
𝑎2

𝑏3. 𝑠3 + 1. 𝑠2 + 𝑏1. 𝑠 + 𝑏0
𝑈2(𝑠)

⏟                    
𝑃𝑎𝑟𝑡 2

 

+
𝑠2. 𝑏3. 𝑦1(0) + 𝑠. (1. 𝑦1(0) + 𝑏3. �̇�1(0)) + 𝑏1. 𝑦1(0) + 1. �̇�1(0) + 𝑏3. �̈�1(0)

𝑏3. 𝑠3 + 1. 𝑠2 + 𝑏1. 𝑠 + 𝑏0⏟                                              
𝑃𝑎𝑟𝑡 3

 

(39) 

This equation is used to simulate the system behaviour once the unknown model parameters 

are calculated. The further procedure is same, i.e., equation (38) is multiplied by 
1

𝑠3
, 

substituted by intermediate variables, and transformed by inverse Laplace theorems to obtain 

the following equation suitable to be solved by Least Squares: 

[

𝑦1𝑖(�̃�1) − �̃�1. 𝑦1(0)
⋮

𝑦1𝑖(�̃�𝑞) − �̃�𝑞. 𝑦1(0)
]

⏟            
�̃�

= 

[
 
 
 
 𝑦1(0) − 𝑦1(�̃�1)

⋮
𝑦1(0) − 𝑦1(�̃�𝑞)

1

2
. �̃�1
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�1)

⋮
1

2
. �̃�𝑞
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�𝑞)

−𝑦1𝑖𝑖𝑖(�̃�1)
⋮

−𝑦1𝑖𝑖𝑖(�̃�𝑞)

𝑢1𝑖𝑖𝑖(�̃�1)
⋮

𝑢1𝑖𝑖𝑖(�̃�𝑞)

𝑢2𝑖𝑖𝑖(�̃�1)
⋮

𝑢2𝑖𝑖𝑖(�̃�𝑞)

1

2
. �̃�1
2

⋮
1

2
. �̃�𝑞
2

�̃�1
⋮
�̃�𝑞
]
 
 
 
 

⏟                                                        
𝐻 [

 
 
 
 
 
 
𝑏3
𝑏1
𝑏0
𝑎1
𝑎2
𝑦120
𝑦110]

 
 
 
 
 
 

⏟  
𝑥

 

(40) 
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Here, 𝑏2 (instead of 𝑏3) is determined in the vector of unknown model parameters 𝑥. The 

initial conditions can be calculated back from the intermediate variables by inverting the 

following linear system of equation: 

[
𝑦120
𝑦110

] = [
1 𝑏3
𝑏3 0

] [
�̇�1(0)
�̈�1(0)

] 

(41) 

Similarly, any coefficient of the output signal can be normalized, and the equations could be 

solved to obtain further possible solutions. 

3.3.3 Zeroing Different Coefficients 

In the case when one or many coefficients of the ODE are pre-decided to be zero, then the 

procedure remains same, but some terms are removed from the equations. In equation (15), 

say 𝑏2 is arbitrarily chosen and set to zero, the ODE equation changes to: 

𝑏0. 𝑦1(𝑡) + 𝑏1. �̇�1(𝑡) + 1. 𝑦1(𝑡) = 𝑎1. 𝑢1(𝑡)+𝑎2. 𝑢2(𝑡) 
(42) 

Then the Laplace transformations are carried out to give the following equation: 

𝑏0. 𝑌1(𝑠) + 𝑏1. (𝑠. 𝑌1(𝑠) − 𝑦1(0)) + 𝑠
3. 𝑌1(𝑠) − 𝑠

2. 𝑦1(0) − 𝑠. �̇�1(0) − �̈�2(0) = 

𝑎1. 𝑈1(𝑠) + 𝑎2. 𝑈2(𝑠) 
(43) 

The terms are rearranged and sorted for 𝑌1(𝑠) which gives the following equation: 

𝑌1(𝑠) =
𝑎1

𝑠3 + 𝑏1. 𝑠 + 𝑏0
𝑈1(𝑠)

⏟            
𝑃𝑎𝑟𝑡 1

+
𝑎2

𝑠3 + 𝑏1. 𝑠 + 𝑏0
𝑈2(𝑠)

⏟            
𝑃𝑎𝑟𝑡 2

 

+
𝑠2. 𝑦1(0) + 𝑠. �̇�1(0) + 𝑏1. 𝑦1(0) + �̈�1(0)

𝑠3 ++𝑏1. 𝑠 + 𝑏0⏟                          
𝑃𝑎𝑟𝑡 3

 

(44) 

This equation is used to simulate the system behaviour once the unknown model parameters 

are calculated. The next procedure is same, i.e., equation (43) is multiplied by 
1

𝑠3
, substituted 

by intermediate variables, and transformed by inverse Laplace theorem to obtain the 

following equation suitable to be solved by Least Squares: 
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[

𝑦1(�̃�1) − 𝑦1(0)
⋮

𝑦1(�̃�𝑞) − 𝑦1(0)
]

⏟          
�̃�

= 

[
 
 
 
 
1

2
. �̃�1
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�1)

⋮
1

2
. �̃�𝑞
2. 𝑦1(0) − 𝑦1𝑖𝑖(�̃�𝑞)

−𝑦1𝑖𝑖𝑖(�̃�1)
⋮

−𝑦1𝑖𝑖𝑖(�̃�𝑞)

𝑢1𝑖𝑖𝑖(�̃�1)
⋮

𝑢1𝑖𝑖𝑖(�̃�𝑞)

𝑢2𝑖𝑖𝑖(�̃�1)
⋮

𝑢2𝑖𝑖𝑖(�̃�𝑞)

1

2
. �̃�1
2

⋮
1

2
. �̃�𝑞
2

�̃�1
⋮
�̃�𝑞
]
 
 
 
 

⏟                                            
𝐻

[
 
 
 
 
 
𝑏1
𝑏0
𝑎1
𝑎2
𝑦120
𝑦110]

 
 
 
 
 

⏟  
𝑥

 

(45) 

Since, 𝑏2 is chosen to be zero, it simply means that the column corresponding to it in the base 

matrix is removed and it is also absent in the vector of unknown model parameters 𝑥.The 

initial conditions can be calculated back from the intermediate variables by inverting the 

following linear system of equation: 

[
𝑦120
𝑦110

] = [
0 1
1 0

] [
�̇�1(0)
�̈�1(0)

] 

(46) 

Therefore, in a similar way any coefficient of the output and/or input signals can be set to zero 

to obtain different possible models. 

3.3.4 Adding Weights 

At times, a particular range of input measurement data has a strong influence on the output 

producing a transient response. Such time periods of the measured data can be taken care of 

by assigning a special weighting factor in the identification procedure. The individual 

elements of the error vector 𝑒 are weighted by a large value at the corresponding position of a 

diagonal weighting matrix 𝑊, so now the cost function becomes the weighted error square 

sum: 

𝐽(𝑥) =
1

2
. 𝑒𝑇(𝑥).𝑊. 𝑒(𝑥) 

(47) 

The 𝐽(𝑥) is minimized with respect to 𝑥 and the unknown model parameters are found out 

using the equation: 

�̂� = (𝐻𝑇 .𝑊.𝐻)−1. 𝐻𝑇 .𝑊. �̃� 

(48) 
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3.3.5 Dead Time – Parametric Search 

Dead time is the delay from when an input signal starts until when the output signal first 

responds. This section explains the theoretical procedure to calculate the dead time in a 

system. 

Consider a system with two input signals 𝑢1 and 𝑢2 and one output signal 𝑦1 as shown in 

following figure: 

 

 

Figure 3: Time representation of a system with input and output signals 

 

In this type of multi-input system two types of dead times usually appear namely, output time 

delays and the input time delays. Although both the delays cause the output to appear at a 

later point of time than the input, these delays can be calculated independently of each other. 
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A. Output Time Delays: 

To calculate the output time delay, the output signal is shifted back in time step by step 

between pre-defined time bounds. At each step, the identification procedure (from section 

3.2.2) is performed and using the Least Squares, the square-sum 𝐽(𝑥) is obtained from 

equation (5). This 𝐽(𝑥) is divided by number of measurements used for estimation and this 

value, say 𝐽𝑑, is recorded. At the end of this process, all 𝐽𝑑 obtained at different steps are 

compared, and the solution is obtained at the step where 𝐽𝑑 is the smallest. The time offset at 

this step is calculated to give the required output time delay. The following figure shows the 

concept of shifting the output signal into the past: 

 

 

Figure 4: Concept of shifting the output signal into the past 
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B. Input Time Delays: 

In case of multi-input systems, there are more than one input signals, that can have individual 

delay times. Therefore, each input signal is shifted individually into the future, step by step. 

But to apply this, a different start of estimation is arbitrarily chosen because there is no record 

of the data previous to the measurement range. At each step, the identification is done, and the 

square-sum 𝐽(𝑥) is calculated. Here too, the value 𝐽𝑑 is calculated by dividing 𝐽(𝑥) by the 

number of measurements used for estimation. At the end of this process, the minimum among 

all 𝐽𝑑 is found out and the step corresponding to it is checked. Now, at this step, the time 

offset from the start of measuring range is calculated separately for each input signal, which 

provides the individual input time delays. The following figure shows the concept of shifting 

the input signals into the future: 

 

 

Figure 5: Concept of shifting the input signals into the future 

 

It should be noted that in both the cases due to the shifting of signals, some measurement data 

is omitted, and the information is always lost. 

This process for calculation of both output and input delay times can also be extended for 

multiple outputs (𝑦2(𝑡), 𝑦3(𝑡) and so on) in a similar way. 
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3.4 Evaluation Criteria 

Two criteria are defined for the evaluation of the identification procedure: 

A. Fit Value: 

𝑓𝑖𝑡 = 100%. (1 −
𝑛𝑜𝑟𝑚(𝑦𝑀𝑒𝑠𝑠 − 𝑦𝑆𝑖𝑚)

𝑛𝑜𝑟𝑚(𝑦𝑀𝑒𝑠𝑠 −𝑚𝑒𝑎𝑛(𝑦𝑀𝑒𝑠𝑠))
) 

(49) 

where, 𝑛𝑜𝑟𝑚 is the magnitude of the vector. It is also called as Euclidean or 2-norm. Whereas 

𝑚𝑒𝑎𝑛 refers to the mean value of the vector. 𝑦𝑀𝑒𝑠𝑠 and 𝑦𝑆𝑖𝑚 refer to the measured and 

simulated output, respectively. This fit value [13] is basically normalized root mean square 

error between the measured and simulated output data (obtained from equation (23)) and acts 

as a criterion to determine the quality of identification. 

B. Back Calculation Accuracy (RR) Value: 

𝑅𝑅 = 100%. (1 −
𝑛𝑜𝑟𝑚(𝑐 − 𝑐𝑒)

𝑛𝑜𝑟𝑚(𝑐)
) 

(50) 

where vector 𝑐 comprises of the true coefficients and true initial conditions: 

𝑐 = [𝑎1 𝑎2 𝑏2 𝑏1 𝑏0 �̇�(0) �̈�(0)]𝑇 

while vector 𝑐𝑒 consists of the estimated coefficients (obtained from �̂� after minimization) and 

estimated initial conditions (from equation (32)). Thus, the RR value, also known as back 

calculation accuracy, is a measure of the deviations of the estimated coefficients from the true 

coefficients. 

  



28 May 2021 

MIMO Identification Thesis 

 

29 

 

4 Programming Structure – MATLAB 

For the identification procedure described in section 3, the entire programming and testing is 

performed in MATLAB Version: 9.9.0.1570001 (R2020b). 

4.1 About MATLAB 

MATLAB is a programming language that provides a numeric computing environment to 

develop algorithms and create models. It is profoundly used in engineering courses for 

academic and research purposes due to its following advantages over other programming 

languages: 

• It is very easy to implement and test algorithms without the need of recompilation 

• It has inbuilt functions and algorithms for faster development of program codes 

• The debugging feature is very effective to find bugs and errors and makes it easier to 

improve the code 

• It facilitates development of standalone desktop or web application with the help of App 

Designer and MATLAB Compiler. 

These advantages added with the fact that MATLAB is already a part of the curriculum for 

the bachelor students of engineering courses helps to satisfy the thesis requirements and 

makes MATLAB suitable for programming this identification procedure. 

4.2 Design Philosophy 

Before the start of programming, a list of technical requirements to be achieved from the 

identification program is made. This list is split into two parts to provide a sufficient insight 

for programming. 

A. Basic Requirements 

1. Number of input and output signals are identifiable 

2. Splitting of data into two parts viz. for estimation and simulation is possible 

3. The numerator and denominator order of transfer function is selectable 

4. Zero or non-zero initial conditions is selectable 

5. Input, output, and difference graphs are plotted 

6. Fit and RR value are calculated 

7. Estimation with or without noise is possible 

B. Additional Requirements 

1. Degree of over-integration is selectable 

2. Normalizing each denominator coefficient is possible 

3. Setting coefficients equal to zero is possible 

4. Estimation for various sample sizes is possible 

5. Results in terms of coefficients of transfer function or poles-zeros is selectable 

6. Variable start of estimation is possible 

7. Measured data weightages are selectable 

8. Dead times of each transfer function is estimated 
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To fulfil these program requirements a structured way of programming is adopted. Initially, 

only the basic requirements are programmed. The codes are written in function files. These 

function files do not provide output on their own, but for them to do so they need to be called 

out by other files by passing on some parameters as input. Each function file follows a 

specific format. It begins with a header which includes the file name, its purpose, input and 

output parameters of the function, name of the author, time of creation and a change log that 

has a note of all the modification activities done in the program. The remaining part of these 

files is the programmed algorithm intended for further use. Moreover, wherever required, 

every section of the code is properly commented with the necessary description for easier 

understanding. Once the basic requirements are programmed, testing is performed using the 

test files (that also follow a similar header format). Further, the in-built features of debugging 

and generating profiler report are used to solve the programming errors and improve the speed 

and quality of code. For each additional requirement that is programmed, the function files are 

modified by adding the required algorithm and the corresponding input-output parameters. 

These files are tested every time after modification using new test files. If required, the codes 

are debugged, and the run time is measured again. Also, after every modification, it is ensured 

that the previous test files and functionalities still run without an error. In this manner, a new 

requirement is programmed into the code without the loss of the old ones. 

Following is the program structure of the identification procedure: 

 

 

Figure 6: Program structure for identification of MIMO systems 

 

The program structure shows the flow of commands between different files. These files are of 

two types, Script files (marked in orange colour) and Function files (marked in blue colour).  
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identification_method_MIMO.m is the main function file that has most of the technical 

requirements of the program (except graphs and evaluation criteria) incorporated into it. It 

basically splits the measured data and also holds the code to estimate input and output time 

delays. If the input parameters are selected separately for each MISO system, then this main 

function file runs as many times as the number of MISO systems, otherwise it runs just once 

if these parameters are same across all the outputs. This file saves all the variables in a 

structure data type known as results that enables the user for its efficient extraction. This main 

file passes on the necessary inputs to another function named calc_param.m (that is 

programmed inside the same main file) to estimate transfer function and simulate the model 

behaviour. 

For plotting measurement and simulation graphs, the plot_MIMO.m is used. It has four 

different subplots that represent the input data (measured and estimated), output data 

(measured, estimated, and simulated), measured minus simulated output error and lastly the 

estimated minus simulated output error. The colour coding and the plot line type is 

maintained throughout to distinguish each plot from one another (refer test results in section 

5.2 for the graphs). 

The quality of model is evaluated in quality_criteria_MIMO.m. The output data (measured 

and simulated) and the unknown model parameters (true and estimated) are passed here as 

inputs to get the fit and RR values as outputs. If the true model parameters are unknown, then 

only fit value is calculated. 

The test files (e.g., test_001.m) are basically scripts that test the program requirements. They 

generate artificial measurement data and pass on the input parameters to the main function file 

to identify the model. The results acquired are then passed as inputs to the plot and quality 

check function. (refer section 5 for more program testing related details) 

Overall, this methodology was followed throughout this programming phase that helped to 

maintain simple, fast, and efficient programs. 

(All the MATLAB built in functions that are directly used are listed in Appendix A at the end 

of this document.) 
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5 Identification Program Testing 

This section refers only to the tests that are conducted to verify the working of the 

identification method. 

5.1 Testing Philosophy 

Once the basic requirements are programmed, the testing phase starts. To perform efficient 

testing and to maintain track of all the test results, a testing methodology is adopted. Initially, 

each requirement is allotted an identification number and test scenarios (if available) are 

mentioned. Each test to be performed is also allotted a test case identification number. The 

requirements are listed row-wise (vertically), and test cases are listed column-wise 

(horizontally) to obtain the Requirement-Test Matrix (as shown below). 

 

 

Figure 7: Requirement-Test Matrix 

 

After the creation of this matrix, a series of tests are conducted by varying different 

parameters to verify the basic requirements that are programmed (The first seven tests shown 

in the matrix above refer to this activity). Once it is completed and the expected results are 

achieved, additional requirements are programmed one by one. After each requirement is 

programmed, new test cases are created for testing. A requirement might need one or more 

than one tests depending on the number of systems to be identified and the combination of 

input parameters that are selected. After each test, the requirements that are tested are marked 

with a cross in corresponding boxes of the matrix. It can be seen that the basic requirements 

being fundamental to the identification program get tested again and again with the additional 

requirements.  

Thesis Title:
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TC001 TC002 TC003 TC004 TC005 TC006 TC007 TC008 TC009 TC010 TC011 TC012 TC013 TC014 TC015 TC016 TC017 TC018 TC019 TC020 TC021 TC022
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All these tests cases, follow the same principle that a system with known transfer function is 

used to artificially generate measurement data. With the help of this data, the parameters of 

this system are reidentified and a comparison is made to check the identification quality. 

As mentioned in the design philosophy, after each modification in the program, it is ensured 

that the previous test files and the functionalities still run and provide the same results. For 

this purpose, a test-error maintenance is carried out. An error number is defined for the test 

cases and is recorded for each test. This error number is defined as: 

𝐸𝑟𝑟𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 = 1 −
𝐹𝑖𝑡 𝑖𝑛 %

100
 

(51) 

For tests, where multiple models are identified, the lowest of all the fit values is taken to 

calculate the error number. The smaller the number, more better is the identification. So, 

when the main program is modified for additional requirements, the old tests are run again, 

and the new error number is cross-checked with the previously recorded one to verify the 

results. If not the same, this error number should not be greater than the previous one after 

program modifications are done. Because a greater error number suggests a lower 

identification quality. Therefore, this helps to improve or at the least maintain the quality of 

the identification program after programming of each requirement. 

Following table shows the error number for the respective test cases. An empty space 

suggests that the fit value was not calculated in that test. 

Test Cases Error Number Test Cases Error Number 

001 - 012 0.471 

002 - 013 - 

003 - 014 0.432 

004 0.035 015 0.095 

005 0.020 016 0.011 

006 0.025 017 0.023 

007 0.063 018 0.029 

008 0.032 019 0.095 

009 0.337 020 0.027 

010 0.071 021 0.112 

011 0.016 022 0.034 

Table 1: Error number for various test cases  
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5.2 Test Results 

5.2.1 Single-Input Single-Output System 

A test is performed to identify a single-input single-output system once the basic requirements 

are programmed. For the same, a system with input (𝑢) and output signal (𝑦) as shown in 

figure below is taken into consideration. The transfer function 𝐺 of numerator order 0 and 

denominator order 2 is arbitrarily chosen to generate artificial measurement data. The values 

of these transfer functions can be referred in the figure below. The step size for generating 

data is selected as 0.01. In this case no noise component is added to the generated data. 

 

 

Figure 8: Signals and systems for testing 

 

The same model order and estimation length from 0 𝑠𝑒𝑐 to 7 𝑠𝑒𝑐 is selected for identification. 

Here, the idea is to test the fundamental requirements i.e., if the system identifies number of 

input and output signals, can split the data into estimation and simulation, if it estimates the 

coefficients of transfer function as per the selected model order, evaluates the quality criteria 

and plots the required graphs. After identification, the estimated coefficients are obtained as 

shown below: 

 

Parameter True Values Estimated Values 

𝑎1 2 2.0039 

𝑏1 4 4.0050 

𝑏0 1 0.9936 

Table 2: Comparison of true and estimated coefficients for SISO system 
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From the comparison table it is clear that, the system has correctly identified the number of 

input and output signals. For the selected model order, it has also identified the coefficients of 

the transfer function with an RR value of 99.80 % (almost 100 %). 

 

 

Figure 9: Measurement and simulation plots with identified transfer function 

 

The graph shown above has four subplots. The first two represent the input signals and the 

output signals (both measured and simulated) respectively, while the last two represent the 

output error. The data used for estimation is marked in blue crosses. It can be verified from 

the plot that first 7 𝑠𝑒𝑐 are used for estimation. The model fit is 99.59 % (almost 100 %). 

Therefore, at no noise, the coefficients are recalculated with high accuracy and simulated 

response has almost no deviations. This also verifies the basic requirements included in the 

identification program. 
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5.2.2 Non-Zero Initial Conditions 

The program here is tested for a system with measurements that does not start in equilibrium 

position. For the same, a two-input two-output system (𝑢1, 𝑢2, 𝑦1, 𝑦2) as shown in figure 

below is taken into consideration. 𝐺1, 𝐺2, 𝐺3 and 𝐺4 are the transfer functions of numerator 

order 0 and denominator order 3 that are arbitrarily chosen to generate artificial measurement 

data. The values of these transfer functions can be referred in the figure below. Additionally, 

the following arbitrary initial conditions are also selected: 

[𝑦1(0) �̇�1(0) �̈�1(0)] = [1 0.04 −0.2] 
(52) 

[𝑦2(0) �̇�2(0) �̈�2(0)] = [0.5 −0.15 0.3] 
(53) 

The step size for generating data is selected as 0.01. To simulate measurement errors, 

normally distributed random numbers with standard deviation from 0.00 to 0.05 in steps of 

0.01 are added to the artificially generated measurement data. 

 

 

Figure 10: Signals and system for artificially generated measurement data  
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Now, the idea here is to find the coefficients of the transfer functions for the experimental 

model shown in figure below as well as to make the simulated response of the system as close 

to the output measurement data by identification procedure developed in this thesis. The same 

model order is selected for the identification program. 

 

 

Figure 11: Experimental model for recalculation of transfer functions 
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Here the measurement and simulation plot obtained for output 1 for a standard deviation 

value of 0.05 is only shown: 

 

Figure 12: Measurement and simulation plots with identified transfer function 

 

Following table shows a comparison between the true and estimated coefficients of the 

transfer functions and initial conditions for output 1: 

Parameter 
True 

Values 

Estimated values with noise component σ 

𝜎 = 0.00 𝜎 = 0.01 𝜎 = 0.02 𝜎 = 0.03 𝜎 = 0.04 𝜎 = 0.05 

𝑎1 3 2.9929 2.9950 2.9970 2.9988 3.0005 3.0019 

𝑎2 2 1.9918 1.9990 2.0061 2.0132 2.0201 2.0270 

𝑏2 2 1.9881 1.9934 1.9986 2.0037 2.0086 2.0135 

𝑏1 3 2.9741 2.9945 3.0149 3.0353 3.0555 3.0757 

𝑏0 1 0.9899 0.9958 1.0018 1.0078 1.0138 1.0198 

�̇�1(0) 0.04 0.0397 0.0683 0.0970 0.1256 0.1544 0.1831 

�̈�1(0) -0.2 -0.2011 -0.2513 -0.3015 -0.3518 -0.4022 -0.4525 

Table 3: Comparison of true and estimated model parameters at different levels of noise 
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Following figure shows the comparison of fit and RR value at different standard deviations of 

noise for output 1: 

 

 

Figure 13: Accuracy comparison at different levels of noise 

 

At standard deviation of 0.05 the fit value obatined is 97.95 % and RR value is 94.18 %. It is 

seen that with increase in magnitude of noise component, the accuracy decreases. Both the fit 

value and RR value seems to be very good even for higher noise. Therefore, this means that 

for noisy measurements the transfer functions obtained is numerically close. Further, a 

considerably good simulation with only slight deviations is obtained and the non-zero starting 

conditions are also estimated. 
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Similar results are generated for second output as shown below: 

 

 

Figure 14: Measurement and simulation plots with identified transfer function 

 

Parameter 
True 

Values 

Estimated values with noise component σ 

𝜎 = 0.00 𝜎 = 0.01 𝜎 = 0.02 𝜎 = 0.03 𝜎 = 0.04 𝜎 = 0.05 

𝑎1 1 0.9994 1.0410 1.0856 1.1333 1.1843 1.2387 

𝑎2 2 1.9796 2.0357 2.0941 2.1548 2.2179 2.2834 

𝑏2 3 2.9721 3.0418 3.1141 3.1889 3.2664 3.3467 

𝑏1 4 3.9674 4.0196 4.0723 4.1253 4.1788 4.2327 

𝑏0 5 4.9310 5.0316 5.1350 5.2414 5.3507 5.4631 

�̇�2(0) -0.15 -0.1490 -0.1175 -0.0854 -0.0526 -0.0192 0.0149 

�̈�2(0) 0.3 0.2913 0.2246 0.1535 0.0776 -0.0034 -0.0902 

Table 4: Comparison of true and estimated model parameters at different levels of noise 
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Figure 15: Accuracy comparison at different levels of noise 

 

This verifies the identification program for estimating non-zero initial conditions with noisy 

measurement data for a multi-input multi-output system. 
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5.2.3 Over-Integration 

The program here is tested for over-integration (refer section 3.3.1 for mathematical 

description). The same two-input two-output system (𝑢1, 𝑢2, 𝑦1, 𝑦2) as the previous test 

(shown in figure 10), with the same transfer functions 𝐺1, 𝐺2, 𝐺3 and 𝐺4 of numerator order 

0 and denominator order 3 are arbitrarily chosen to generate artificial measurement data. The 

step size for generating data is selected as 0.01. To simulate measurement errors, normally 

distributed random numbers with standard deviation from 0.00 to 0.05 in steps of 0.01 are 

added to the artificially generated measurement data. 

The same model order is selected for identification and the results without and with over-

integration (up to factor 2) are compared. Here to effectively compare the results between the 

combination of different standard deviation values and over-integration factors, the 

measurement and simulation plots are avoided and only an accuracy comparison based on the 

evaluation criteria is made. Moreover, from hereon, result for only one of the outputs is 

shown since the identification is independent of each other. 

 

 

Figure 16: Accuracy comparison for different noise levels and over-integration factors 

 

It is seen here that with over-integration factor of 1 the accuracy increases for the 

corresponding standard deviations (shown by dashed line). This effect may happen because 

numerical integration makes the simulated output signal more deterministic and less sensitive 

to linear dependence. On the contrary over-integrating it further decreases the accuracy 

(shown by dotted line). The cause for this may be the unavoidable numerical integration 

errors. Hence, over-integrating the signals may or may not improve the accuracy for various 

systems. But the system model can always be checked for over-integration and the best 

possible solution could be chosen from the available ones to improve the model quality.  
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5.2.4 Normalizing Different Coefficients 

The program tested here is for normalizing different coefficients of denominator (refer section 

3.3.2 for mathematical description). A two-input one-output system (𝑢1, 𝑢2, 𝑦1) with the 

transfer functions 𝐺1 and 𝐺2 of numerator order 0 and denominator order 3 is arbitrarily 

chosen to generate artificial measurement data. Also, these transfer functions have the 

coefficient of 𝑠3 normalized. The true values of coefficients are provided in the comparison 

table later. The step size for generating data is selected as 0.001. To simulate measurement 

errors, normally distributed random numbers with standard deviation from 0.00 to 0.05 in 

steps of 0.01 are added to the artificially generated measurement data. 

The same respective model order is selected for identification. All the four denominator 

coefficients are normalized one by one in the program for comparison of identification results. 

 

 

Figure 17: Accuracy comparison for different noise levels and  

normalizing each denominator coefficient 

 

At no noise, the fit value is same for different normalization coefficients. But as the noise 

level increases the fit quality differs and that means simulated response changes as per the 

normalization of different coefficients. This is due to the modelling errors and unavoidable 

numerical integration errors in the input and output signals that gives slightly different over-

determined system of equations. Also, it can be noted that for noisy measurement data, 

normalization of the highest order denominator coefficient gives the best possible fit quality 

compared to others (even when the true transfer function used to generate artificial 

measurement data is normalized by any coefficient in the denominator). 
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Here, accuracy in terms of RR value is avoided as it is already known that the coefficients 

calculated are not numerically same because of different normalizations. Following table 

compares the estimated coefficient values for normalization of different denominator 

coefficients at zero standard deviation: 

 

Parameter True Values 

Estimated values with noise component  

𝜎 = 0.00 and normalized coefficient 

𝑏3 = 1 𝑏2 = 1 𝑏1 = 1 𝑏0 = 1 

𝑎1 3 2.9974 1.5007 0.9995 0.7505 

𝑎2 2 1.9981 1.0004 0.6663 0.5003 

𝑏3 1 (norm.) 1 0.5007 0.3335 0.2504 

𝑏2 2 1.9974 1 0.6661 0.5001 

𝑏1 3 2.9989 1.5014 1 0.7508 

𝑏0 4 3.9941 1.9996 1.3319 1 

Table 5: Comparison of true and estimated model parameters for 

normalizing each denominator coefficient 

 

If the estimated values in column 𝑏2 = 1 are normalized with coefficient of 𝑏3 (here, 0.5007) 

then the values obtained are numerically close to column 𝑏3 = 1. And the same follows for 

other columns. This verifies the identification program for normalizing different denominator 

coefficients. 

  



28 May 2021 

MIMO Identification Thesis 

 

45 

 

5.2.5 Setting Coefficients to Zero 

The program tested here is for setting different coefficients to zero (refer section 3.3.3 for 

mathematical description). A two-input two-output system (𝑢1, 𝑢2, 𝑦1, 𝑦2) with the transfer 

functions 𝐺1, 𝐺2, 𝐺3 and 𝐺4 (as shown in figure below), of numerator order 2 and 

denominator order 3 is arbitrarily chosen and some of the coefficients are arbitrarily set to 

zero to generate artificial measurement data. The step size for generating data is selected as 

0.01. To simulate measurement errors, normally distributed random numbers with standard 

deviation of 0.05 are added to the artificially generated measurement data. 

 

 

Figure 18: Signals and system for artificially generated measurement data by  

setting some coefficients to zero 

 

As shown in figure above, to compare and verify, the same model order is selected, and the 

same coefficients are pre-set to zero for the identification process. The remaining unknown 

coefficients are estimated, and simulated response is plotted. 
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Figure 19: Measurement and simulation plots with identified transfer function by  

setting some coefficients to zero 

 

A good fit value of 97.52 % and RR value of 96.21 % is obtained. Following table compares 

the true and estimated coefficients of the identified transfer function: 

 

Parameter True Values 

Estimated values with 

noise component  

𝜎 = 0.05 

𝑎1 3 3.2532 

𝑎2 4 4.0836 

𝑎5 1 1.0245 

𝑎6 1 0.9868 

𝑏1 5 4.9480 

Table 6: Comparison of true and estimated coefficients by  

setting some coefficients to zero 

 

Similarly, by setting the coefficients corresponding to 𝑠0 to zero, integrators and 

differentiators can be achieved in a transfer function. 
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5.2.6 Various Sample Sizes 

The program here is tested by changing the sample size of estimated data range. The same 

single-input single-output system (𝑢, 𝑦) (as shown in figure 8), with the same transfer 

function 𝐺 of numerator order 0 and denominator order 2 is arbitrarily chosen to generate 

artificial measurement data. The step size for generating data is selected as 0.0001. No noise 

is added to this artificially generated measurement data. 

Same model order is selected for identification. The sample size for estimation is selected as: 

ℎ = [0.0001 0.001 0.01 0.1] 
(54) 

This is achieved by selecting every 𝑛𝑡ℎ data for estimation where: 

𝑛 = [1 10 100 1000] 
(55) 

 

Figure 20: Accuracy for different sample sizes for estimation 

 

Selecting 𝑛𝑡ℎ data among available measurements is in fact omission of some data points. 

This results in loss of some information that negatively affects the identification quality. This 

effect is seen in the figure above, where increasing sample size reduces the accuracy of 

identification. 

The numerical errors that are present, sometimes prevent base matrix inversion. This process 

of selecting 𝑛𝑡ℎ data, also known as thinning-out data, reduces these numerical errors. 

Therefore, in such cases a solution can be obtained by thinning-out the data and compensating 

the model quality.  
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5.2.7 Result in Transfer Function or Poles-Zeros 

The program tested here is to obtain results in terms of transfer function and poles-zeros. A 

two-input two-output system (𝑢1, 𝑢2, 𝑦1, 𝑦2) with the transfer functions 𝐺1, 𝐺2, 𝐺3 and 𝐺4 

(as shown in figure below), of numerator order 1 and denominator order 3 is arbitrarily 

chosen to generate artificial measurement data. The step size for generating data is selected as 

0.01. No noise is added to this artificially generated measurement data. 

 

 

Figure 21: Signals and system for artificially generated measurement data to obtain result in 

transfer function and poles-zeros 

 

The same model order is selected for identification. Input parameter is set as 0 to obtain the 

results in transfer function (polynomial form) or 1 to obtain it in poles-zeros (factorized 

form). A direct comparison is made between the results obtained in both the forms in the 

following figure: 
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Figure 22: Resultant transfer functions obtained in both the forms 

 

Therefore, the identification procedure is tested to provide the results in the polynomial as 

well as poles-zeros form of transfer function. These are also directly checked with the actual 

transfer function used to generate measurement data. 
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5.2.8 Different (Non-Zero) Start of Estimation Time 

The program tested here is for a non-zero start of estimation. A two-input two-output system 

(𝑢1, 𝑢2, 𝑦1, 𝑦2) with the transfer functions 𝐺1, 𝐺2, 𝐺3 and 𝐺4 (as shown in figure below), of 

numerator order 1 and denominator order 1 is arbitrarily chosen to generate artificial 

measurement data. The step size for generating data is selected as 0.01. To simulate 

measurement errors, normally distributed random numbers with standard deviation of 0.05 

are added to the artificially generated measurement data. 

 

 

Figure 23: Signals and system for artificially generated measurement data for  

different (non-zero) estimation start 

 

An arbitrary start (4.37 𝑠𝑒𝑐) and end (12.58 𝑠𝑒𝑐) for estimation time is selected, and the 

system is identified for the same model order. The following figure shows the measurement 

and simulation plot for output 1 of the identified model: 
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Figure 24: Measurement and simulation plots with identified transfer function for  

different (non-zero) estimation start 

 

Parameter True Values 

Estimated values with 

noise component  

𝜎 = 0.05 

𝑎1 1 1.0257 

𝑎2 2 2.0257 

𝑎3 1 1.0705 

𝑎4 1 1.0028 

𝑏0 3 3.1099 

Table 7: Comparison of true and estimated coefficients for  

different (non-zero) estimation start 

 

The fit and RR value of 98.94 % and 96.61 % respectively shows that even when a different 

estimation data set is selected from the measurement data, the system can be modelled and 

simulated with a high quality. Sometimes when a part of the measured data does not have 

more dynamics i.e., the input or the output signals or their derivatives assume steady value, 

then corresponding columns in the base matrix become more and more similar and 

coefficients cannot be calculated. In such cases this functionality is useful to select a different 

measuring range for estimation and calculating the coefficients.  
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5.2.9 Adding Weights 

A two-input two-output system (𝑢1, 𝑢2, 𝑦1, 𝑦2) with the transfer functions 𝐺1, 𝐺2, 𝐺3 and 𝐺4 

(as shown in figure 23), of numerator order 1 and denominator order 1 is arbitrarily chosen to 

generate artificial measurement data. The step size for generating data is selected as 0.01. To 

simulate measurement errors, normally distributed random numbers with standard deviation 

of 0.03 are added to the artificially generated measurement data. 

The data is normally generated by applying equal weightage value to all the measurements. 

But for testing of this program, the identification is done by adding same weights to the 

measurements from time 4 𝑠𝑒𝑐 to 8 𝑠𝑒𝑐 (this is chosen arbitrarily). Following are the five 

different weight values that are taken one at a time for this specific time range: 

𝑊 = [0.01 0.5 1 3 10] 
(56) 

A comparison is made between the model quality to verify it with the expected behaviour: 

 

 

Figure 25: Accuracy comparison for different weights 

 

It is seen that the accuracy improves by adding weightage values. This is in fact accordance 

with the theory (refer section 3.3.4 for the description), that increase in weights for individual 

elements of the error vector, reduces the error value (measured output minus simulated 

output) at those points. Furthermore, this improves the model quality. Hence, this verifies the 

identification program for applying additional weightage values to the measurements. 
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5.2.10 System with Dead Times 

The tests for output and input delay time are performed separately (refer section 3.3.5 for the 

concept of time delays). 

A. Output Time Delays 

The program here is tested to calculate the output time delays. The same two-input two-output 

system (𝑢1, 𝑢2, 𝑦1, 𝑦2) (as shown in figure 10), with the same transfer functions 𝐺1, 𝐺2, 𝐺3 

and 𝐺4 of numerator order 0 and denominator order 3 are arbitrarily chosen to generate 

artificial measurement data. The step size for generating data is selected as 0.01. To simulate 

measurement errors, normally distributed random numbers with standard deviation of 0.03 

are added to the artificially generated measurement data. The output time delays used for 

generating data are set as 𝐷1 = 1.2 𝑠𝑒𝑐 and 𝐷2 = 0.8 𝑠𝑒𝑐. 

The same model order is selected for identification and the delay type to be estimated is set as 

1 representing the output delay. Dead time bounds are also set as [0 𝑠𝑒𝑐 2 𝑠𝑒𝑐]. 

 

 

Figure 26: Measurement and simulation plots with identified transfer function and  

calculated delay for output 1 
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Figure 27: Measurement and simulation plots with identified transfer function and  

calculated delay for output 2 

 

Parameter 

(unit in sec) 
True Values  Calculated Values with 

𝜎 = 0.03 

𝐷1 1.2 1.2000 

𝐷2 0.8 0.8100 

Table 8: Comparison between the actual and calculated output delay times 

 

By doing a parametric search the identification program calculates almost numerically 

identical output time delays as that of actual values. Moreover, a good quality model is also 

obtained with high accuracy values for both the outputs (Fit: 98.66 %, 98.73 % and RR: 

97.76 %, 94.77%). This tests the program for calculating output delay times. 
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B. Input Time Delays 

The program here is tested to calculate the input time delays. The same two-input two-output 

system (𝑢1, 𝑢2, 𝑦1, 𝑦2) (as shown in figure 10), with the same transfer functions 𝐺1, 𝐺2, 𝐺3 

and 𝐺4 of numerator order 0 and denominator order 3 are arbitrarily chosen to generate 

artificial measurement data. The step size for generating data is selected as 0.01. To simulate 

measurement errors, normally distributed random numbers with standard deviation of 0.03 

are added to the artificially generated measurement data. The input time delays corresponding 

to each transfer functions used for generating data are set as 𝐷1 = 0.8 𝑠𝑒𝑐, 𝐷2 = 1.2 𝑠𝑒𝑐, 
𝐷3 = 1 𝑠𝑒𝑐 and 𝐷4 = 1.5 𝑠𝑒𝑐. 

The same model order is selected for identification and the delay type to be estimated is set as 

2 representing the input delay. Dead time bounds are also set as [0 𝑠𝑒𝑐 2 𝑠𝑒𝑐]. The 

estimation starts at the upper limit of this dead time bounds to compensate for the absence of 

data prior to the measurements. 

 

 

Figure 28: Measurement and simulation plots with identified transfer function and  

calculated input delays for output 1 
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Figure 29: Measurement and simulation plots with identified transfer function and  

calculated input delays for output 2 

 

Parameter 

(unit in sec) 
True Values  Calculated Values with 

𝜎 = 0.03 

𝐷1 0.8 0.8300 

𝐷2 1.2 1.2100 

𝐷2 1 0.9700 

𝐷2 1.5 1.4700 

Table 9: Comparison between the actual and calculated input delay times 

 

By doing a parametric search the identification program calculates almost identical input time 

delays as that of actual values. Moreover, a good quality model is also obtained with good 

accuracy values for both the outputs (Fit: 97.27 %, 98.05 % and RR: 93.21 %, 91.12%). 

This tests the program for calculating input delay times. 
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5.3 Conclusion 

Each and every requirement of the identification program is tested with multiple tests thus 

verifying the identification method. Test results show that multi-input multi-output systems 

with noisy measurement data are identified. The program is also applicable for systems that 

do not start in equilibrium position because, the initial values are estimated. System with dead 

times are also identified with an accurate recalculation of delay times. Over-integration, 

normalizing different denominator coefficients and adding weightages provide more number 

of choices to select the best possible solution. Transfer function is obtained in both 

polynomial as well as factorized form. As seen from the results of the two evaluation criteria 

in these tests, the coefficients are recalculated, and the simulated response is generated with 

high accuracy. Thus, this method is applicable to open and closed loop systems and also for 

stable and unstable systems. 
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6 Performance Testing 

This section tests the performance parameters like computational time, accuracy, and 

robustness of the identification method. It includes testing with the optimization functions to 

compute the dead times. The identification procedure is also tested with measurement data 

from a real system. A comparison is also made between the identification procedure and 

MATLAB System Identification Toolbox. 

6.1 Output Delay Time using Optimization Function 

Initially, for the estimation of dead times, a parametric search was carried out. After 

successfully testing the identification program for dead times, an optimization algorithm was 

developed. This algorithm is tested here using two MATLAB optimization functions, namely, 

fmincon and ga (genetic algorithm). Lower and upper dead time bounds are provided for both 

these optimizers to carry out a constrained minimization process between these limits. The 

values are set as [0 𝑠𝑒𝑐 2 𝑠𝑒𝑐] respectively. ga does not require an initial value for starting 

the optimization. For fmincon it is set as 0 𝑠𝑒𝑐. Now, the exact same system given in section 

5.2.10 A is used to generate artificially generated measurement data for both the cases. And 

the remaining identification parameters are set to same values. 

6.1.1 Optimization using fmincon 

The simulation results obtained were as follows: 

 

 

Figure 30: Measurement and simulation plots using fmincon to  

calculate delay time for output 1 
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Figure 31: Measurement and simulation plots using fmincon to  

calculate delay time for output 2 

 

Parameter 

(unit in sec) 
True Values  Calculated Values with 

𝜎 = 0.03 

𝐷1 1.2 1.0400 

𝐷2 0.8 0.9000 

Table 10: Comparison between the actual and calculated output delay times 

using fmincon 

 

The optimization using fmincon does not give the exact estimates of output time delays. 

Because it depends highly on the initial value that is provided for optimization. A better initial 

guess of this value could give better results. Although, the estimated coefficients obtained 

with an RR of 81.08 % and 89.38 % are not exact, still an acceptable fit quality is obtained 

for both the outputs (Fit: 95.08 %, 97.29 %). 
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6.1.2 Optimization using ga 

 

 

Figure 32: Measurement and simulation plots using ga to  

calculate delay time for output 1 

 

 

Figure 33: Measurement and simulation plots using ga to  

calculate delay time for output 2  
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Parameter 

(unit in sec) 
True Values  Calculated Values with 

𝜎 = 0.03 

𝐷1 1.2 1.2000 

𝐷2 0.8 0.8100 

Table 11: Comparison between the actual and calculated output delay times 

using ga 

 

The optimization using ga gives an almost identical estimate of output time delays. Moreover, 

a good quality model is also obtained with high accuracy values for both the outputs (Fit: 

98.66 %, 98.73 % and RR: 97.76 %, 94.77%). The time delay and accuracy values obtained 

here are numerically same with the values of parametric search.  

6.1.3 Accuracy vs Computational Time Comparison 

 

 

Figure 34: Comparison for output time delay estimation using the identification procedure 

with parametric search and the two optimizers 

 

Although the ga optimizer gives the same result as the parametric search, it takes a lot of time 

to estimate the model parameters and dead time. On the other hand, fmincon is faster than 

both the methods but the estimated dead time and the identified coefficients are not accurate. 

In comparison with both the optimizers, the identification procedure with parametric search, 

has high accuracy and a much lower computational time than ga.  
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6.2 Identification of a Real System 

Here the method is tested with measurement data obtained from a real system. Data sets are 

generated from a single-input single-output system with three different input signals. A single 

output is generated by adding the output of all the three signals together. This three-input one-

output system whose true coefficients and initial conditions are unknown is tested using the 

identification procedure. 

Initially, numerator order 0 and denominator order 2 is selected and initial conditions are 

calculated. The coefficient of the highest derivative of output is set to 1 for the normalization 

and the remaining coefficients are determined. The result with this setup is as shown: 

 

 

Figure 35: Measurement and simulation plots with identified transfer function of  

numerator order 0 and denominator order 2 

 

A good fit of 96.79 % is obtained with the selected parameters for identification. Since the 

true coefficients are unknown, model quality is checked only using the fit value i.e., the 

difference between the measurement and simulation (shown in subplot 3 of above figure). 

During identification it is necessary that the noise components are filtered out instead of 

getting modelled. Therefore, this difference signal needs to be uncorrelated to get a better 

identification. 

To obtain a better fit, first the order of numerator is increased and then the denominator order. 

This is done until there is no significant improvement in the fit value. Keeping the other 

parameters same, a fit of 99.20 % (almost 100 %) is achieved with numerator order 0 and 

denominator order 3. This is shown in the figure below: 
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Figure 36: Measurement and simulation plots with identified transfer function of  

numerator order 0 and denominator order 3 

 

Here, the best possible solution is obtained with a high model quality. In the figure above, the 

difference signal looks almost like uncorrelated white noise. If in case the model quality is 

still not good, then the estimation range or the normalization coefficient can be altered, and 

the fit value could be checked. The system can also be checked by setting different 

coefficients to zero or by searching for dead times. As seen from the previous section, the 

time required to compute the solution is very less and thus many models can be generated 

very quickly from the same measurement data set. These models can then be evaluated for the 

fit criterion and the model with highest fit can be selected as the best result. 

Hence, the method is successfully tested with measurement data from a real system. 
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6.3 Comparison with System Identification Toolbox 

In this section the identification method is compared with the System Identification Toolbox 

provided by MATLAB. In the comparisons below, it is to be noted that, a suffix R to the 

variables, denote the identification procedure described in this thesis, while a suffix M denotes 

the MATLAB System Identification Toolbox. A two-input one-output system (𝑢1, 𝑢2, 𝑦) is 

chosen here (as shown if figure below) with arbitrary transfer functions 𝐺1, 𝐺2 with 

numerator order 0 and denominator order 3 to generate artificial measurement data. The 

values of these transfer functions can be referred in the figure below. The step size for 

generating data is selected as 0.01. The other test specific parameters required are defined in 

subsequent sections. 

 

 

Figure 37: Signals and system for artificially generated measurement data for comparison 
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6.3.1 Zero Initial Conditions 

 

 

Figure 38: Measurement and simulation plots with zero initial conditions and no noise 

 

 

Figure 39: Measurement and simulation plots with zero initial conditions and 

standard deviation of 0.03 
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Quality Criteria 
Identification 

Method 
System Identification 

Toolbox 

Fit 
𝜎 = 0.00 99.36 % 89.69 % 

𝜎 = 0.03 95.14 % 90.19 % 

RR 

𝜎 = 0.00 99.27 % 43.52 % 

𝜎 = 0.03 93.77 % 41.84 % 

Table 12: Comparison of quality criteria with zero initial conditions 

 

A direct comparison shows that the identification method gives a better fit than the system 

identification toolbox regardless of noise levels. Moreover, the recalculated coefficients of the 

transfer function using the toolbox deviate strongly from the actual values thus losing their 

physical significance in practical applications. On the other hand, the RR value obtained from 

the identification procedure is good which means the recalculated coefficients can be used 

again to calculate back other operating parameters. 

 

6.3.2 Output Delay Time 

For the same system, the output time delays used for generating data is set as 𝐷1 = 1.2 𝑠𝑒𝑐. A 

standard deviation of 0.03 is used. The system is then identified using both the methods. 

 

 

Figure 40: Measurement and simulation plots with output delay time  
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In case of time delays, the simulation behaviour obtained from toolbox is poor with a fit of 

only 48.49 %. The simulated values deviate highly from the measurement data which was not 

part of the estimation range. Also, the recalculated coefficients (RR: −24.30%) and the time 

delay value (0.07 𝑠𝑒𝑐) obtained are not at all identical with the true values. In comparison, the 

identification procedure gives good results with high model quality (Fit 98.66 %) and 

recalculates the exact coefficients (RR: 97.82 %) and time delay (1.2000 𝑠𝑒𝑐). 

 

6.3.3 Accuracy vs Computational Time Comparison 

 

 

Figure 41: Comparison using the identification procedure in this thesis and MATLAB System 

Identification Toolbox 

 

The green dashed lines represent the results from identification method described here, while 

the magenta dashed, and dot lines represent the results from the toolbox. The accuracy and 

computational time difference between the two methods is clearly visible. The method 

developed here requires less time and gives more accurate results. Whereas the toolbox takes 

more computational time and identifies with lesser accuracy. 
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6.4 Conclusion 

The optimization functions were successfully tested to estimate the output time delay. On 

comparison with the parametric search results, the optimization with fmincon had a slight 

drop in accuracy but was found to be faster than the parametric search. This will speed up the 

process to identify systems with output delay times. Efforts in guessing the initial value of the 

optimizer can help to obtain better results. The identification method was also tested with 

measurement data from a real system. As the method requires a low computational time, a 

high-quality fit was quickly obtained by changing model orders and other parameters. This 

shows that the method has a wide range of application with real systems. Then three 

comparisons were made with System Identification Toolbox of MATLAB. In each case, the 

identification method developed here proved to be more efficient, in terms of both accuracy 

and computational time, than the toolbox. 
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7 Summary and Future Scope 

To summarize, an identification method to model multi-input multi-output systems, described 

only from the theoretical concepts of bachelor course of engineering sciences was presented. 

A complete MATLAB program satisfying all the technical requirements for identification was 

developed and successfully tested with the help of multiple test cases. An algorithm for 

parametric search was developed to evaluate system dead times. For system with output delay 

times, the results of the parametric search were compared with the optimization function. The 

identification method was tested for measurement data generated by a real system and good 

quality results were obtained. Finally, the identification method proved to be more accurate 

and fast when compared to the MATLAB System Identification Toolbox. 

At present, the extension of the optimization function to evaluate the input delay time is being 

worked on to further increase the speed of identification with dead times. The future scope of 

this method would be to include plant properties, like stability, instability, and minimum 

phase, in quality criterion minimization so that these properties are not lost in the solutions.  

Another interesting work would be to solve the least square problem that has a rank-deficient 

base matrix. This would help overcome the limitation of this method when the base matrix is 

non-invertible. Further, a web-application is to be created for this method using the MATLAB 

App Designer to test real-time system data. 
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Appendix 

A. MATLAB Functions 

all min 

ceil nargin 

cell norm 

cell2mat ones 

circshift plot 

cumtrapz profile 

error sawtooth 

exp sgtitle 

factorial sim 

find sine 

flip size 

fliplr sprint 

floor square 

fmincon struct 

ga subplot 

grid text 

hold tf 

iddata tfest 

isempty tf2zp 

isnan xlabel 

legend xlim 

length ylabel 

lsim zeros 

mean zpk 

 


