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ABSTRACT 

A frequency domain design methodology proposed in Jaya
suriya and Franchek [1988] provides for the satisfaction of con
troller and state constraints in the presence of an unknown-but
bounded disturbance. The methodology is based on mapping 
the constraints expressed in the time domain into the frequency 
domain to determine a suitable target feedback system. An 
improvement of the methodology based on a geometric inter
pretation of the design constraints lends itself to an effective 
technique for determining the maximum bound on a persistent 
bounded disturbance. The geometric interpretation is made in 
terms of a family of weil defined circles. A loop shaping proce
dure is also developed. The design methodology is applied to a 
fourteenth-order nuclear power plant model. 

I. INTRODUCTION 

In practical systems the control goal is often to keep state 
or output signals in certain predetermined bounds in the pres
ence of various d.isturbances. A design technique that accounts 
for such performance requirements was recently proposed in 
Jayasuriya and Franchek [1988]. Specifically, they consider the 
problem of directly satisfying constraints on system states and 
bandwidth limits while maximizing the size of an allowable per
sistent bounded disturbance. The approach is based on fre
quency domain ideas. The time domain constraints on a linear 
time invariant system with unity feed back under the influence 
of a bounded disturbance are transformed into the frequency 
domain. Many important feedback issues, such as sensor noise 
and energy distribution, can be better seen in the time domain. 

An improvement of the above methodology based on a ge
ometric interpretation of the design constraints is the main fo
cus of the present study. lt is shown that the time domain 
constraints correspond to a family of closed loop circles with 
their common area of intersection displaying the allowed de
sign region for the closed loop transfer function. From this cir
cle family, a technique for determining the maximum tolerable 
disturbance is also derived. Moreover, design bounds on mag-

nitude and phase are also generated for finding suitable loop 
transfer functions. The Bode plot and the Nichols chart are 
used as the primary tools for loop shaping. 

The initial justification for the design methodology was on 
heuristic reasoning and simulation results. Recently, its basic 

assumptions have been justified t.heoretically (Jayasuriya, Zent
graf and Rabins (19901). For disturbance rejection, Jayasuriya 
and Franchek [1988] argue that if the system can reject a step 
of a given height, it is likely to reject any disturbance signal 
whose amplitude is bounded by the step size. This reasoning 
was based on the fact that a step includes the slowest pos
sible signal, a constant value, and the fastest possible signal, 
the initial impulse. Since then, it has been shown (Jayasuriya, 
Zentgraf and Rabins [1989]) that this is true if and only if the 
system transfer function is "strictly proper" and its impulse re
sponse does not change sign. Otherwise, a square wave signal 
can always be found to violate the time domain constraints. 

Another contribution of this work is the investigation of the 
rela.tion between a. bounded step response in the time domain 
and the corresponding ma.gnitude of the system transfer func
tion. This completes the general justifica.tion of the methodol
ogy. 

Section II gives the problem formulation and a theoretical 
justification, followed by the design method. A fourteenth-order 
model of a nuclear power plant is studied in section III using our 
design methodology. A summary of the results and conclusions 
are given in section IV. 

II. PROBLEM FORMULATION AND DESIGN 
METHOD 

Consider a linear, time invariant, single input, multiple out
put system (SIMO system) described by the following state 
equations 

x(t) = Ax(t) + Bu(t) + Gw(t) 

y(t) = Hx(t) 

(1) 

(2) 

where x(t) E Rm 1s the state vector, u(t) E R 1 1s the scalar 
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control, w(t) E R 1 is the scalar input disturbance and y(t) E Rn 
is the output vector. The matrices A, B, G and H are of 
appropriate dimensions. 

The output signals yz(t), l = 1, 2, ... n, the control variable 
u(t) and the control rate ü(t) have for all times the constant 
upper bound ßz, ßu and ß,,, respectively: IY1(t)I ::'.'. ßz, lu(t)I ::'.'. ßu 
and lu(t)I ::'.'. ß„ fort E [O,oo). The design objective is to find a 
controller that keeps the system within the above prespecified 
bounds under a bounded disturbance signal lw(t)I ::'.'. !, a > 0 
for all times. 

Laplace transfonmng (1) and (2) yiel<ls 

l[yz(t)] = Yz(s) = Gzw(s) · W(s) + Gzu(s) · U(s) (3) 

where l[u(t)] = U(s), l[w(t)] = W(s), G1u = [H(sl- At 1 B]1, 
l = l,2,··•,n,andG1w=[H(sI-A)-1 G]1,I = 1,2,··•,n. 

Using the output signal y; for feedback yields the block di
agram shown in Fig. l. From that the following transfer func
tions can be written: 

and 

where 

Y;(s) 
W(s) 

G,w(s) 
------------- --

1 + Lo ( s) 

U(s) _ -G,w(s) 
W(s) - G,u(s) 

is the open loop transfer fuuction. 

(4) 

(5) 

(6) 

The controller rate U(s) = s • U( s) has the transfer function 

U(s) U(s) -G,w(s) L0 (s) -- = S· -- =S· --~--~--
W(s) W(s) G;u(s) 1 + Lo(s) 

W(,) 

Fig. l. Strudur<' nf a F,-,,.clhack Control Sysh·m 

with an Input Dislurhanc<' [lj 

(7) 

The transfer functions that relate the remaining states to 
the disturbance are obtained by substituting (5) in (3): 

(8) 

where j = 1, 2, ... n, j =/= i. 

The design goal is to find an L0 (s) that guarantees ßu 2 lu(t)I, 
ß„ 2 \u(t)I and ßz 2 IY1(t)\, l = 1,2, ... n, up to a certain max
imum disturbance for all times. If the impulse response of 
a strictly proper transfer function G( s) does not change sign 
fort E [O,oo), the output signal y(t) under the unknown-but

bounded input signal lw(t)I ::'.'. ~ achieves its maximum for a 

2 

step input w(t) = c-1 [~] (Jayasuriya, Zentgraf and Rabins 

[1990]). If the impulse response changes sign, a square wave 
signal with an appropriate switching depending on the location 
of the sign change can be found that yields a greater value for 
y( t) than ilue to that of the step response. Since the impulse re
sponse is the time derivative of the step response, a sign switch 
on the impulse response corresponds to an oscillatory step re
sponse. Even if the response is oscillatory, a step yields the 
largest output if one can guarantee that the disturbance signal 
w( t) is always either positive or negative, because the worst 
case cannot occur. 
In further development of the approach the disturbance is treated 
as a step, and the assumption is justified later in time domain 
simulations. 

II.l Transforming Time Domain Bounds into the Frequency Do
main: 

The key to the method is mapping time domain bounds on 
the output signals and the controller to corresponding frequency 
domain bounds. Consider the bounded step response h(t) due 

to a step input of height 1 (Fig. 2). 

(9) 

Assume first O :S h(t) ::'.'. ß for all timest, t E [O, oo); i.e., the 
system has no undershoot. This excludes systems with an odd 
number of positive zeros ( Normiatsu [1961 ]). 

h(t) 

ß 

F'ig. 2. DoundC'd Stcp flcsponsr h(t) 

Substituting s = jw in (9) the magnitude of the system G(s) 
can be written as 

IG(jw)I = liw · a · H(jw)I (10) 

Using the Laplace Integral and estimating an upper bound 
for [G(jw)\ with the time domain bound ß on h(t) yields 

[G(jw)I ::'.'. a · ljw f"' ß · e-jwt dt\ 

a · ß · 1 J~ · [e-jwoo - l]I 
-JW 

::'.'. 2 · a · ß (11) 

Now consider a step response with an undershoot where the 
sign change occurs at t = t1 . Again, the Laplace Integral can 
be written as 



IG(jw)I a • ljw f 0 h(t) · e-jwt dtl 

a • {ljw {' h(t) · e-jwt dt 

+ Jw 100 h(t). e-jwt dtl} 
11, (12) 

Using the time domain bound ß a.s upper bound on IG(jw )1 
and triangle inequality yields 

IG(jw)I S a · ß · {l[e-jwt, - l]I + l[e-jwoo - e-jwt, ]I} 

< a · ß · { 4 } (13) 

This means that the magnitude of a system IG(jw )1 is always 
upper bounded by 4•a-ß, if the step response due to' a step input 
of height ~ is bounded by ß. This is only suffi.cient, because 
unstable systems can be bounded in the frequency domain too. 
But violating the bound 4 • a • ß is suffi.cient for violating the 
bound on the step response. Thus the region below 4 · a • ß in 
the frequency domain is a necessary location for the amplitude 
of a system IG(jw)I (Fig. 3) 

Simulation results show that for certain systems G( s), a 
violation of the time domain bound occurs for a smaller upper 
bound than 4 · a • ß; therefore, a scale factor 'Y with O < 'Y ::; 4 
is introduced. The smallest necessary region in the frequency 
domain can now be described by 

IG(jw)I S a•ß·'Y (14) 

Experiments show that for most systems 'Y = 1. For systems 
without undershoot, 'Y lies between O and 2; for systems G(s) 
with an undershoot, 1 may be even greater than 2, but not 
greater than 4; the latter rase relaxes the frequency bound. 
This makes sense, because admitting an undershoot means also 
relaxing the time bound. 

Thus, a time response h( t) due to a step input with height 
~ that stays within the bound lh(t)I ::; ß has a corresponding 

system transfer function G( s) such that IG(jw) 1 S a · ß · 'Y 
with I as a system dependent constant where O S 'Y S 4. A 
classification of transfer functions G( s) by the value of 'Y is a 
current research topic. 

The method also provides sharpness. Consider a stable sys
tem G( s) that is saturating at a specific frequency the frequency 
domain upper a · ß · 'Y· Assume the step response does not sat
urate the time domain bound; then the height of the step input 
could be increased until saturation. But this implies a viola
tion of the necessary frequency bound. Therefore, saturating 
the frequency bound yields saturation of the time bound. 

II.2 Development of an Allowed Region in the Frequency Do
main: 
Bringing the transfer functions (4 - 8) into the form (12) yields: 

a · ßu ?: 1 [~ts)I 
W(s) (15) 

a ·ß„ ?: 1 Ü(s) 1 
W(s) (16) 

a · /3; ?: 1 Y;(s) 1 

W(s) (17) 

Ot. • ß; ?: 1 Y;(s) 1 

W(s) (18) 

3 

/G(jw)/ 

4. Q. /3 

Fig: 3. Necessary Hegion of jG(Jw )1 

for a Bound<'d St.ep ll,·sponsc 

Here, 'Y is assumed to be 1. 

Substituting (4 - 8) in (15 - 18) and rearranging terms gives 
the inequalities for the yet unknown open loop transfer function 
L (s) where L (s) - _Lo(•J ..• 

• c - l+Lo(•) • 

(19) 

-G- (s) 
ILc(s)I s 1-c;J.;rl · ßu · a (20) 

ILc(s )1 S 1 =-~iu(~) 1 • _.1:_ · ßu · a (21) 
G;w(s) lsl 

ILc(s) - G;,.(s). G;w(s) 1 s ,a; .. (s). G;w(s) I · ß;. a (22) 
G;,.(s) · G;w(s) G; .. (s) · G;w(s) IG;w(s)I 

lt can be shown (Zentgraf [1989a]) that inequality (19) maps in 
the closed loop plane to 

(23) 

All inequalities (20 - 23) represent at a constant frequency Wv 

"allowed circles" for Lc(s) in the closed loop plane that meet 
constraints (15 - 18). The radii and center coordinates are sum
marized in Table 1. An arbitrary closed loop transfer function 

Lc( s) that simultaneously meets all time domain constraints 
must necessarily lie within the common intersection area of the 
closed loop circles (Fig. 4) at each frequency. 

Feedback State 

R.emaining State 

Thble 1: Circles in the Closed Loop Plane as Necessary Loca
tions for L0(.,) 



Fig. 4 .. Allowed Region for a Closed Loop 

Transf<'r Function /,c(.s) at w = w„ 

II.3 Maximum Disturbance Rejection: 

At a particular frequency, the maximum disturbance that can 
be rejected is achieved for a °'opt for which the common inter
section area shrinks to a single, optimal point. An iterative 
algorithm has been developed (Zentgraf [1989b]) for comput
ing the coordinates of this point and the corresponding value 
for a = °'opt• A typical plot of the function aopt(w) is shown 
in (Fig. 5). The peak at frequency Wb represents the theoreti
cal maximum disturbance that can be rejected over the entire 
frequency range, which depends enirely on the system charac
teristics. 

ff the order of the numerator of the Gzw(s) transfer function, 
l = I, 2, ... n, is less than that of the characteristic polynomial, 
then 

lim aopt(w) = 0 
W->00 

(24) 

This can be shown by formulating an upper bound on O<opt. 
Consider the origin. If it is included in all circles, their radii 
must have at least the same length as the distance of the centers 
from the origin, yielding the equation 

°'"P = ma:v (IGißz(s)I] ,l = 1,2, ... n (25) 

Clearly, this expression vanishes if the denorninator has a higher 
order than the numerator (strictly proper), which is true in 
many physical systems. Note that the origin is also the center 
of the controller circle (Table 1) and therefore the controller 
constraint ß„ and its rate constraint ßv. do not impact the upper 
bound on °'opt. 

II.4 Loop Shaping in the Frequency Domain: 

The design procedure can be described as follows: First, the 
optimal points are plotted in a Bode diagram. Normally they 
correspond to a complex, high-order, nonrational transfer func
tion termed the "optimal transfer function" Le( s )opt because it 
gives the critical value for a, aopt at every frequency w. Second, 
the largest and smallest bounds on magnitude and phase on 
the allowed region (Fig. 4) for a,i.,;9n = aopt are plotted in the 
Bode diagram (Fig. 6). This yields upper and lower bounds on 
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n(w) 

IL,(jw)I 

Fig. 5. Optimal Values of a 

over tlw Entire Fr<'quency Hange 

IL,(jw)I..,. 

_.-IL,(jw)lo,o, 

IL,(jw)I, ... 

lL,(jw).,, 

Fig. 6. l'vlagnitud,· and l'ba.se Bounds on L,(s) 

Le(s) for both magnitude and phase. Clearly, at the binding 
frequency Wb they must meet. A closed loop transfer function 
Le( s) can now be designed that follows as closely as possible 
the optimal transfer function and stays within the bounds. In 
general it is diflicult to meet magnitude and phase bounds with 
a low order system, since the approximation of the nonrational 
optimal transfer function generally requires high order. Hence 
the bounds are relaxed by increasing a,1e,;9 n to obtain lower 
order compensators. 

II.5 Impact of the Choice of the Feedback Signal: 
In Table 1 it is assumed that y; is the feedback output. 

Now consider output Yk with 1 :::; k :::; n, k # i as the feedback. 



This yields a new circle family (Table 2). Rotating the circles 

and stretching the whole plane give a conformal configuration 
with the same value for °'opt as before. Using the rotation angle 
1 a,.,(iwv ),G,. (jwv l and the stretching factor I Gkw(iwv l G,. (jwv l I aives 

G,.(Jwv ),G;w (Jwv) Gku(Jwv ),G, •. (Jwv) o-

the original circle family shown in Table 1. lt proves that the 
choice of the feedback output does not affect the maximum 
disturbance rejection, so that an arbitrary output can be chosen 
for feedback with no restriction on the control performance. 

Feedback State 

R.emaining State "" 3w., · "" p.,.,., 
G1;.., 'w., •G-" ·w„ 

Table 2: Circles in the Closed Loop Plane with Feedback Out
put y1r, 

11.6 Mapping of the Family of Closed Loop Circles into a Family 
of Open Loop Circles: 

Because the mapping between open and closed loop plane 
is conformal, a family of open loop circles can be determined. 

Consider a circle in the closed loop plane with radius R., and 
center (xmc,Ymc) as shown in (Fig. 7) with the equation 

(26) 

where Xc,Yc define the coordinate axes of the closed loop plane. 
The goal is to determine the corresponding radius R,, and cen
ter (xmo,Ymo) of the open loop circle as a function of R.,, and 
(xmc,Y,nc)-

The open loop coordinates x 0 , y 0 are related to the closed 
loop Coordinates Xe, Yc by 

(27) 

which yields 

X 0 +_x; -t y~ 
Xe == 

1 + 2 · X 0 + X~ + y; (28) 

Yo Yc = - --- ------- ----~-----------
1 + 2 · X 0 + X~ + y';, 

(29) 

Substituting (28) and (29) in (26) and rearranging terms gives 

[1 + 2 · Xo + x! + Y~] · {( x! + Y! )( 1 - 2 · Xmc + x;,.c + y;,J 
+ Xo ( - 2 · Xmc + 2 · x;,.c + 2 · y;,.J + x;,.c + Y!c - 2 · Ymc · Yo} 

(30) 

Further rearranging of terms yields the circle equation of the 
corresponding open loop circle. Its radius and center are shown 
in Table 3. Also the inverse solution, the closed loop circle 

Plane Radius I Center(x-Coord.) 1 Center(y-Coord.) 

Closed Loop 
Open Loop _ R.c __ _ __ __Ymc 

1·-Zmc 2 + mc 2 -R2 1-z..,, 2 + .-nc 2 -R2 

Table 3: Open Loop Circle Corresponding to a Closed Loop 
Circle 
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G 
Fig. 7. Correspondi'ng Circles 

in the Closed and Open Loop Plane 

corresponding to an open loop circle with radius R,, and center 
(xmo,Ymo), can be derived as shown in Table 4. 

The inside of a circle in the closed loop plane that includes 
1 + jO maps to the outside of the corresponding open loop cir
cle, because 1 + jO in the closed loop plane maps to oo in the 
open loop plane. Hence the common area of intersection, the 
allowed region for a closed loop transfer function, of the fam
ily of closed loop circles does not necessarily map to a concave 
region in the open loop plane. If the common area of intersec
tion includes 1 + jO, then the allowed region in the closed loop 
plane is transformed into a forbidden region in the open loop 
plane. This fact is inconvenient to loop shape using a Bode 
plot. Furthermore, stability can be easily checked while design
ing a closed loop transfer function Lc(s) instead of an open loop 
transfer function L0 ( s). Therefore the design process is made 
in the closed loop plane. 

III. A NUCLEAR POWER PLANT EXAMPLE 

A single-input multiple-output model of a simplified 
pressurized-water-reactor (PWR) type nuclear power plant 1s 
chosen (Parlos et al. [1988]) as a nontrivial example in order 
to demonstrate the design approach. The reactor equations are 
linearized at the operating points 10%, 20%, 50%, 70%, 90%, 
100% and 110% of full power, yielding a fourteenth-order model 
with the form of (1) and (2). 

The system has one input (rod position) and four output 
signals: average neutronics power deviation, average fuel tem
perature deviation, average hot-leg temperature deviation and 
the average primary coolant temperature deviation. 



1 Pla,u, ___ _J ___ ~~ius ___ _l _(Jenter(x:C<>o;d. )J c„nte~{?'.:()oor<l.) i 

l ~t:~;~:p- .. ;~:-~ ~. ~R~ - -~5~~{:::~~-;-1-~~~~J 
Table 4: Closed Loop Circle Corresponding to an Open Loop 
Circle 

The approach is detailed only for the model corresponding to 
90% full power; the results for the complete model can be found 
in Zentgraf[1989b]. 

The tra.nsfer function modd of the system corresponding to 
90% of full power is given below. 

G ( ) = 22.0499. 
lu s A(s) 

(s + 2.4636 + j · 0.1163)(s + 2.4636 - j · 0.1163) · 

(s + 0.4618 + j · 0.2962)(s + 0.4618 - j · 0.2962) · 

(8 + 0.2464)(s + 0.0769)8 (31) 

3585.18 
G2u ( s) = -Ll(;)- · 

(s + 2.4614 + j • O.ll 79)(s + 2.4614 -j • 0.1179) • 

(s + 0.4676 + j • 0.2965)(s + 0.4676 - j • 0.2965) • 

(s + 0.0769)( s + 0.0074) (32) 

G ( ) = 33.8301 . 
3u s A(s) 

(s + 4.8012)(s + 4.7391)(s + 0.2906)(s + 0.2213) · 

(s + 0.0769) (33) 

G ( ) _ 16.9151 . 
4u s - A(s) 

(s + 4.8012)(s + 4.7391)(s + 0.4426)(8 + 0.2906) · 

(s + 0.0769) (34) 

G ( ) _ 33.9492 . 
lw s - A(s) 

(s + 4.7125)(s + 4.4833)(s + 4.1978)(s + 0.4537) · 

(s + 0.2511)(s + 0.0769) (35) 

G ( ) = -2.0609. 
2w s A(s) 

(s + 4.9144)(s + 4.4833)(s + 4.1978)(s + 0.4537) • 

(s + 0.0803)(s - 245.3980) (36) 

-9.1034 
Ga10 (s) = A(s)-· 

(s + 221.193)(s + 4.4833)(s + 4.1978)(s + 0.3341) · 

(s + 0.0248) (37) 

G ( ) = -6.2342 . 
4w B A(s) 

6 

where 

A(s) 

(8 + 226.687)(8 + 4.4833)(8 + 4.1978) · 

(8 + 2.4009 + j • 0.1376)(s + 2.4009 - j • 0.1376) · 

(s + 0.5219 + j · 0.4202)(s + 0.5219 - j · 0.4202) · 

(s + 0.3235)(s + 0.04734) (38) 

(s + 226.6870)(s + 4.4833)(s + 4.1978)(s + 2.7323) · 

(s + 1.8551)(s + 0.3285) · 

(s + 6.9533 + j • 0.2716)(s + 6.9533 - j · 0.2716) · 

(s + 0.0655 + j · 0.0486)(s - 0.0655 + j · 0.0486) 

IIl.l Design Objective: 
The design task is to find a controller that keeps the four 

output signals, the controller variable and its rate within the 
following bounds for all times t E [O, oo ): 

Ill.2 Design Execution: 

37.01 2 lu(t)I 

o.75 2 lu(t)I 

0.1 2 IY1 (t)I 

65.27 2 IY2(t)I 

5.55 2 IYa(t)I 
2.86 2 IY4(t)I 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

Since bandwidth was not a concern in Parlos et al. [1988}, Y2 
is arbitrarily chosen for feedback. A family of closed loop cir
cles (Table 1) as in section II can be determined. Its common 
intersection area displays the necessary location for any valid 
closed loop transfer function Lc(s). The optimal value for a was 

o(w) 14 

~ 

10 1 \ 
N \ 

\ 
\ 
\ 
~ 

-2 ... 

Fig. 8. Optima.1 Values for a over the frequency w 
found at the binding frequency w,, = 0.092s-1 with a,,p1 = 12.27 
equivalent to a disturba.nce of 8.15%, where the area. shrinks 
to a. single point (Fig. 8). With adesign = aopt bounds on 
ma.gnitude and phase for a valid closed loop transfer function, 
Lc(s) are plotted over the entire frequency range (Fig. 9). As
sume there is an Lc(s) that meets both ma.gnitude and phase 
bounds. H the transfer function corresponding to the satura.t
ing constraints (4 - 8) has an oscillatory step response without 
undershoot, a step is not the worst possible disturba.nce, but a 
squa.re wave, as mentioned in ~ections I and II. Thus the theoret
ical maximum disturbance tha.t can be rejected by this system is 
less tha.n 8.15%. H the system ha.s an undershoot however, the 
allowed disturba.nce might be even grea.ter, since these systems 



relax the frequency bound (section 11.2) and the effects cancel 
each other out. In the best case (-y = 4) a step disturbance 
of height 32.6% can be rejected. But since this can occur only 
with an undershoot an appropriate square wave that violates 
the constraints can be found. Thus, 32.6% is a conservative 
upper bound for the maximal allowable size of the persistent 
disturbance. Only if the step response has neither undershoot 
nor overshoot is 8.15% the maximum disturbance that can be 
rejected satisfying all imposed time domain constraints. 

A closed loop transfer function Lc(s) that meets magnitude 
and phase bounds for 8.15% could not be determined easily. 
The best result. found was for ade.ign = 6.87% with 

s2 

L:(s) = - 3-33 · (~-+ 0.063)2 • (s + 10)3 • (s + 100)2 (45 ) 

Using L0 (s) = it'(-;j an<l (6) the controller Gc(s) can be com

puted: 

Gc(s) = -0.000098· 

(s + 226.6900)(s + 4.4833)(s + 4.1978)(s + 2.7323) 
-------------- -----------------------.. ---- ---------------- ----- --------·--- ---- ---

(s + 2.4614 + j · 0.1197)(s + 2.4614 - j · 0.1197) 

(s + 0.6953 + j · 0.2716)(s + 0.6953 - j · 0.2716) 
(s + 0.4676 + j · 0.2985)(s + 0.4676 - j · 0.2985) 

(s + 0.0656 + • 0.0486)(s + 0.0656 -j • 0.0486) 
( s + 0.04 72 + j . 0.0273)( s -+ 0:0472 =·1:· 0.0273) . 

(s + l.8551)(s + 0.3285)s 2 

(s + 6.1285 + j · 6.1260)(s + 6.1285 - j · 6.1260) 

1 

(s + 0.0769)(s + 0.0074)(s + 17.9280) 

1 

(s + 97.7790)(s + 102.0700) 
(16) 

L~(s) saturates at w = 0.Ols- 1 the magnitude bound at the 
constraint for y4 (Fig. 10). The time domain simulations (Figs. 
11- 16) confirm that y4 is saturated, too. Therefore the as

sumption 1 = 1 for the transfer function r;t} is justified (sec

tion II.2). The signal is oscillatory however, and an appropriate 

Operating P~int lf Theoreti:al 

------- --- -- ------·-- --- -- --· ------------

1 Disturbance 
Max. (l~~,) Achieved Value 1 

10% 3.73% 1.32% 
20% 4.75% 2.27% 
50% 6.68% 4.11% 
70% 7.50% 4.94% 
90% 8.15% 6.87% 

---- -- --

100%-
------

8.44% -~6.89~--
--

110% 8.68% 6.61% 
- -----··--·---·------

L._ ____________________ ----------

Table 5: Allowable Disturbances at All Operating Points 
(-y = 1) 

square wave ca.n v10late the time bound \y4(t)\ :S ß4, for which 
the actual allowed disturbance is less than 6.87%. 

Table 5 summarizes the results for all operating points. The 
column termed "Theoretical Max.( 1~ )" shows the maximum 
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Fig. 10. Bounds on Magnitude and Phase for L~(s) for 6.87% 
Tolerable Disturbance 
disturbance at each operating point that yields the smallest 
possible common area of inter_aection over the entire frequency 
range. The column "Achieved Value" shows the required value 
for 100 so that the area of common intersection includes the 
specific closed loop transfer function L~( s ). Clearly, the val-



1 Operating Point Maximum Disturbance 

10% 2.19% 
20% 3.10% 
50% 4.29% 
70% 5.29% 
90% 6.87% 
100% 6.29% 

---·-·------· ·-------
7.17% 110% 

---~--------------- _ _. ____ 

Table 6: Allowable Disturbances at All Operating Points 
(-y 2'. 1) 
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Fig. 11. Step Response of y1 for 6.87% Tolerable Distur
bance 
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Fig. 12. Step Response of Y2 for 6.87% Tolerable Distur
bance 

ues of the -second column are always smaller than to those 
of the first column. Remember that ·1' was assumed to be 
1. But the time domain simulations at the operating points 
10%, 20%, 50%, 70% and 110% display that the actual step 
height is even greater, since the time domain bounds are not 
saturated. This means, that in these cases 1' is .greater than 1, 
rela.xing the frequency domain bound and enlarging the allowed 
region. 

Table 6 show.s the a.crueved values for the maximum step 
height at each operating point using the true value for 1' that 
yields time domain bound saturation. 
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Fig. 13. Step Response of Y:i for 6.87% Tolerable Distur
bance 
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Fig. 14. Step Response of y4 for 6.87% Tolerable Distur
bance 
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Fig. 15. Step Response of u for 6.87% Tolerable Distur
bance 
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Fig. 16. Step Response of ti for 6.87% Tolerable Distur
bance 

IV. CONCLUSIONS 

A frequency domain design methodology was presented that 
directly imposes time domain constraints on output signals and 
the control variable under an unknown-but-bounded distur
bance. 

In the loop shaping procedure, bandwidth considerations 
can be incorporated simultaneously. The approach can easily 
be extended to plant uncertainty by formulating the frequency 
bounds just for the nominal plant. Since the allowed region in 
the closed loop plane is concave, only the edge points of the 
uncertainty region must be checked; if they are in the allowed 
region over the entire frequency range, the time domain con
straints are also met for the uncertain plant. 

The efficency of the method can be improved with an aJgo
rithm that optimizes the allowed disturbance while guarantee
ing that the output and the controller transfer functions have a 
nonoscillatory step response. Therefore criteria must be devel
oped to specify the largest dass of transfer functions wi t h this 
particular behavior. Transfer functions with oscillatory step 
responses can also be included in the methodology by introduc
ing a factor b that relates the highest possible output signal 

obtained by an appropriate square wave to a step response. 
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