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ABSTRACT 

A frequency domain design methodology is applied to a DC 
motor-speed control system and the results are compared to 

those obtained using 11-optimal control theory (Pearson and 
Bamieh [1990]). Both methods synthesize controllers that maxi
mize the allowable size of an unknown-but-bounded disturbance 
while satisfying prespecified constraints on the control, control 
rate and the outputs. The frequency domain design technique in 
general results in much lower order compensators than those re

quired by the 11--optimal method for a given size of disturbance. 
Also, the design trade-offs regarding the bandwidth of the sys
tem, the size of disturbance input, and the structural complex
ity of the controller transfer function become quite transparent. 

Key Words- Frequency domain design; 11-optimal control; 
QFT. 

I. INTRODUCTION 

The controller design technique given in J ayasuriya and 
Franchek [1988] synthesizes controllers for maximizing the al
lowable size of persistent bounded disturbances while keeping 
the control, the control rate and the outputs of the system 
within prespecified bounds. 

The basic philosophy of the design procedure is to synthesize 
the disturbance rejection system based solely on the size of a 
step input disturbance and parallels the Quantitative Feedback 
Theory ( QFT) of Horowitz [1963]. However, under appropriate 
conditions, any persistent bounded disturbance limited by the 
size of the step also satisfies the time domain constraints on the 
control, the control rate, and the outputs. 

The desig~ proced1;1re i~ as follows. First, a set of target 
transfe~ flll:ct1ons are 1dent1fied by mapping the time domain 
constramts mto the frequency domain. Then, the resulting tar
get transfer functions are utilized to detennine, at each fre
quency, an allowable region in the complex s-plane within which 
~he ~oop transfer function must lie. Finally, classical loop shap
mg 1s used to realize an acceptable loop transfer function. Dur
ing loop shaping, it is possible to take into account any band
width lirnitations imposed on the loop transfer function. 

A geometric interpretation based on intersections of a set of 
circles each corresponding to a specific time domain constraint 
"!as giv~? in Zentgraf an~ Jayasuriya [1989]. This interpreta
t10n fac1htates the determmat1on of the region within which the 
~orninal lo~p transfer_function must lie. Using this approach, it 
1s also poss1ble to estimate or (under certain conditions) com
pute exactly the maximum size of the persistent disturbance 
the system can potentially tolerate. Once a controller is de
signed, the true maximum size of the persistent disturbance 
that the designed control system is able to reject can be easily 
deterrnined. 
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The paper is organized as follows. In section II, the design 
methodology is reviewed. In section III, the design technique is 
applied to a DC motor-speed control system and the results are 

compared with those obtained using the 11-optimal method de
veloped by Pearson and Bamieh [1990]. Finally, the conclusions 
are presented in section IV. 

II. DESIGN METHODOLOGY 

11.1 Problem Formulation: 

Consider the linear time invariant single-input multiple-output 

(SIMO) system represented by 

:ic( t) 

y(t) 

A x(t) + B u(t) + G d(t) 

C x(t), 

(1) 

(2) 

where x(t) E Rn is the state vector, u(t) E R 1 is the scalar 

control, d(t) E R 1 is the scalarinput disturbanceandy(t) E Rm 
is the output vector. The matrices A, B, G and C are of 
appropriate dimensions. 

The output signals Yk(t), k = l, 2, ... , m are bounded by 
ßk, k = l, ... , rn, the control variable u( t) is bounded by ßu and 

the control rate ü(t) is bounded by ß;,. i.e., 
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IYk(t)I :s; ßk, 

lu(t)I :S:: ßu 

lü(t)I :s; ßu, 

k = l, ... ,m (3) 

(4) 

(5) 

for t E [O, oo ). The objective is to synthesize a controller that 
satisfies the time domain constraints while maximizing the size 
of the acceptable bounded disturbance signal, i.e., minimize 

"I > 0, where ld(t)I :S:: ¼-

11.2 Outputs and Control Transfer Functions: 

Taking the Laplace transform of (1) and (2) gives 

where 
Gku = [C(sl - At 1B]k 

Gkd = [C(sl - A)- 1G]k, 

and k = l, 2, ... , m. 

(6) 

As shown in Zentgraf and Jayasuriya [1989], any output can 
be chosen for feedback without altering the maximum allowable 
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size of the input disturbance. Some outputs may, however, 
be preferable for feedback than others. lt is typical to use an 
output that generates design boundaries leading to a simple 
loop shaping problem. 

Therefore, without loss of any generality, by choosing y, as 
the output to be fed back, the block diagram shown in Fig. 1 
can be drawn. 

D(a) 

1 

Figure 1: Block Diagram of the Feedback Control System 

From Fig. 1 we can write 

where 

Y;(s) 
D(s) 

U(s) -G;d(s) L0 (s) 
D(s) = G;,.(s) · 1 + L

0
(s) 

Ü(s) -s · G;d(s) L0 (s) 
D(s) = G,,.(s) 1 + L0 (s)' 

L 0 (s) = Gc(s) · G,,.(s) 

is the loop transfer function. 

(7) 

(8) 

(9) 

(10) 

From (6) and (8), the transfer functions relating the outputs 
to the disturbance input are 

where k = 1,2, ... , m. 

11.3 Generating Frequency Domain Bounds: 

The frequency domain design boundaries are obtained by 
mapping the time domain constraints into their frequency do
main equivalents. To accomplish this, the following lemma 
(Jayasuriya [1990)) is used. 
Lemma: A stable transfer function G(s) with IG(jw)I ::; M, 
has a unit step response bounded as: 

1.c-1 
{ G(s) · ¾ }I::; 4M. 

For a step size other than unity, we can scale the frequency 
response by 'Y, giving 

IG(jw)I::; 1M, 

which in turn leads to a step size of -f:;, yielding a step response 
upper bowided by M. 

With the above result, we can now generate frequency do
main design boundaries that assure the satisfaction of the time 
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domain constraints. Therefore, from Eqns. (3)- (5) we obtain 
the following: 

,·ßu ~ IU(jw)I 
D(jw) 

(12) 

,·ß,, ~ l(jw) • U(jw)I 
D(jw) 

(13) 

1 · ßk ~ IYk(jw)I 
D(jw) ' 

k = 1,2, ... ,m, (14) 

where 1 = ¼ with a being the size of the step disturbance. 

Substituting (8) - (11) into (12) - (14) and rearranging 
terms gives 

ILc(jw)I 

I
L (. ) _ G,,.(jw )Gkd(jw) 1 

c JW Gk„(jw)G;d(jw) 

where k = 1, 2, ... , m and Lc(jw) = 1!;,~(~~) • 
Note that inequalities (15) - (17) are of the form: 

ILc(jw) - C(jw)I =:; IR(jw)I, (18) 

with Lc(jw) lying in the closed region enclosed by a circle cen
tered at C(jw) and radius IR(jw)I at each frequency, w. Thus 
the common intersection of these circles defines the allowed 
region within which the desired closed loop transfer function, 
Lc(jw ), should lie at a specific frequency (Fig. 2). 

Figure 2: Allowed Region for a Closed Loop Transfer Function 

Determination of the estimated minimum value of 1 = ¼, 
which corresponds to the maximum allowed size of the step 
disturbance, now becomes a max-min problem. i.e., at each 
frequency we determine a minimum for 1 ( w) which collapses the 
allowed region defined by (15)-(17) to a point, and then choose 
the maximum of I over all w's. Hence, the estimated maximum 
step disturbance magnitude over the frequencies w E 11 = [O, oo) 
is given by Q'max = -,~'" where ,min = SUPweO 1 (Fig. 3). 



Authorized licensed use limited to: Hochschule Rosenheim (FH). Downloaded on March 22,2021 at 10:23:15 UTC from IEEE Xplore.  Restrictions apply. 

.,....,. 

Figure 3: Optimal Values of 'Y vs. Frequency 

Substituting "Imin for 'Y in (15)-(17), we obtain the allowed 
regions in the complex s-plane within which the loop transfer 
function must lie. The final loop shaping can be carried out by 
transferring these allowed regions into a Nichols chart (Fig. 4) 
over the frequency range of interest. 

0 :0 10 60 80 100 120 l<-0 

·J◄0 -j20 -'00 -,IO -:IO -'.•0 -220 -:"J -;II() -'6C -·•Q -'20 ·100 -80 -50 -<-0 

"ho:e ,-oleideqr"s' 

Figure 4: Frequency Domain Regions Plotted on a Nichols 
Chart 

11.4 Size of the Maximum Step Disturbance: 

Once a loop transfer function L 0 ( s) is designed, the follow
ing bounds on the tolerable size of the step disturbance can 
be calculated (see Jayasuriya and Sobhani [1991] for complete 
proofs.) 

Proposition 1: lf the unit step response of a stable transfer 
function G(s) is bounded by II then IG(j0)I ~ 11. 

Theorem 1: If the maximum value of --y(w), i.e. "Imin, occurs 
at zero frequency, then the maximum tolerable size of a step 
disturbance is amax = - 1--ym•n • 

If "Imin occurs at a frequency other than zero, the maxi
mum size of the step disturbance that the system can tolerate 
is determined by obtaining the unit step disturbance response 
of the closed loop system and noting the maximum values of u, 
u and Yk, denoted by um•x, um= and y',:'"x, k = l, ... ,m. The 
maximum step disturbance size is then given by 

. { ßu ß,-, ßk k } mzn -
1 

-
1
;-
1
.-

1
;-I -

1
, =1, ... ,m . umax umax Ykax 

11.5 Size of the Maximum Persistent Disturbance: 

The size of the maximum persistent disturbance that the 
controlled system can reject is computed as follows (Jayasuriya 
[1989]): 

Assume Wi = G(s) is strictly proper with ly(t)I ~ ß then 

ß 
max ld(t)I = 1 I ( )I . J0 g t - T dr 

(19) 

Therefore, if the im pulse response of the system does not change 
sign, then the size of the maximum step disturbance will be 
equal to the size of the maximum persistent disturbance, since 
lg(t - r)I = g(t - r). That is 

ß 
max ld(t)I = 1 ( )d . f0gt-T T 

(20) 

However, if the impulse response changes its sign then one can 
always find the worst disturbance input d(t) in the form of a 
"square wave". The worst disturbance corresponds to an input 
that makes g( t - r) · d( r) always positive. In that case, the 
maximum persistent disturbance would be less than the size of 
the maximum step disturbance. 
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III. APPLICATION TO A DC MOTOR - SPEED 
CONTROL PROBLEM 

In this section, the design technique is applied to a DC 
motor-speed control problem and the results are compared with 
those obtained by the 11-optimization method (Pearson and 
Bamieh [1990].) The block diagram of the system is shown in 
Fig. 5. 

G,(,) 

Figure 5: Block Diagram of the DC Motor-Speed Control Sys
tem 
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Assuming unity values for all the consta.nts (KT, Ka, J, B, R), 
the following tra.nsfer functions are derived: 

X(s) = Gu(s) · U(s) + Gw(s) · W(s), (21) 

where 

X(s) = [ X1(s)] 
Xl(s) 

(22) 

G ( )- [ G1u(s)] 
u s - G2u(s) 

(23) 

G ( ) _ [ G1 ..,( s) ] 
w s - G2..,(s) (24) 

where U(s) = .C(u(t)) is the controller variable, W(s) = .C(w(t)] 
the disturba.nce, X 1(s) = .C(x1(t)] a.nd X2(s) = .C[x2(t)] the 
states. The transfer functions Gu(s) a.nd Gw(s) are given as 

Gu(s) = 6(•l . [ 1 ~ s ] 

6(,) . [ ~1 ] ' 

where 6(s) = s + 2. 

(25) 

The objective is to find a controller that keeps for all times 
t E (0, oo) the following bounds on the state x2( t), the controller 
u(t) a.nd its rate ü(t) while maximizing the size of the allowable 
disturbance w(t): 

lx2(t)I :S 1 

iu(t)I :S 1 

lu(t)I ~ i. 

(26) 

(27) 

(28) 

The 11-optimal control gives the following results (Pearson 
and Bamieh (1990)) 

n=S 
n = 10 
n = 20 
n= 40 
n = 60 
n = 80 
n = 100 

'Y = 1.562587 
'Y = 0.917115 
, = 0.465110 
, = 0.341940 
'Y = 0.333394 
, = 0.333335 
'Y = 0.333333 

where n is the degree of the polynomial matrix relating the 
constrained variables to the disturbance and 'Y is the reciprocal 
of the maximum allowable size of the persistent disturbance. 
Therefore, to reject a disturbance of magnitude 3.00, an ap
proximately fiftieth order compensator is needed. 

In the following, we apply our methodology and show that 
the same maximum size of the disturbance can be determined 
and rejected by much lower order loop transfer functions. 

Since bandwidth was no subject of concern, x1 is arbitrarily 
chosen for feedback. Therefore, using inequalities (15)-(17), the 
following frequency domain bounds are obtained. 
For State 2: 

I
Lc(jw)- 21 ~ .!_ -1~1 

s+l , s+l 

For Control: 

For Rate of Control: 

ILc(jw)I ~ 
'Y 

1 
ILc(jw)I ~ - · lsl

'Y 

(29) 

(30) 

(31) 

Using the inequalities (29) - (31), a closed loop circle family 
ca.n be determined whose common intersection area displays the 
necessary location for any valid closed loop tra.nsfer function 
Lc( s ). The optimal value for 'Y was found for w -+ 0 with 
'Ymin = ½ equivalent to a disturbance magnitude 3.00, for that 

the area is shrunk to a single point (Fig. 6). Note that since 'Ymin 

occurs at zero frequency, the maximum size of the disturbance 
is indeed equal to 3.00 (which is the same as the /1-optimal 
result.) 
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\ 1 1 

·~ L---4---1 1--+--I ----+----+-----1 1 -\+-± ----j-----1 

~ ~ ~ ~ ~ J ~ J ~ 

Figure 6: Optimal Values of 'Y vs. Frequency for the Example 

Substituting 'Y = ½ in inequalities (29) - (31), the frequency 
domain allowed regions for the loop transfer function can be 
determined on a Nichols chart shown in Fig. 7. 
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Figure 7: Frequency Domain Bounds on L 0 (s) for (a = 3.00) 

A loop tra.nsfer function L0 ( s) that meets magnitude and 
phase bounds for 'Y = ½ is 

(32) 
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yielding the following controller: 

1 s + 2 
Gc(s) = --3. --4· 

s + 3 
(33) 

Step responses of x 2 , u and u are shown in Fig. 8 which 
illustrates the satisfaction of time domain constraints for step 
disturbance of magnitude 3.00. As shown in Fig. 9, the im
pulse responses of the constrained variables do not change sign. 
Therefore, the maximum allowable size of the persistent distur
bance is also 3.00. 

01----------..::..=..=--.,~--------------< 

-.2 

\ 
-• \ 
-.6 

\ 
\ 

------ u 

-.8 \ X2 
\,_ 

- 1 LL.LL.L..LL...WLOLI'-'..1....1..J....l..W...U...w...w...LL..LL..LL..u...u...LI...U...LL..U..L..L.Lc_L..LLJ 
0 5 

Ti"E (SEC) 

Figure 8: Time Responses for Step Disturbance ( a 
Design 1 

-.6 

3.00) -

X2 

-7c..L.L.LLL.L...Ww.Jw.J...L.>...L.>..W...W...U.-L.L_LL.L..L.L..L.L..L.L..L.L..L.L..L.L..L.L..LL..LL..LL..LL 
0 5 10 

TIME (SEC) 

Figure 9: Impulse Responses - Design 1 

Although the controller transfer function G c( s) results in 
satisfaction of all time domain constraints, it is not strictly 
proper and therefore has an infinite bandwidth ( which is not 
practically feasible). However, any attempt to roll off the loop 
transfer function at some high frequency range by adding a far
off pole to L 0 ( s) will cause the impulse response of u to change 
sign which leads to a reduction of the size of the maximum 
persistent disturbance. This is transparent from the fact that 
both u and u are forced to have impulse responses of one sign. 
However, it is difficult if not impossible to obtain a strictly 
proper controller transfer function G c( s) unless the controller 
transfer function is made to have a more complex structure 
needed to approximate the behavior of a non-strictly proper 
transfer function, i.e. a higher order controller is needed. Note 
that the need for high order controllers is consistent with the 
results from P-optirnization method. However, as will be shown 
in the following, the order of the controller need not be as high 
as the one reported for the P-optimal approach. A much lower 
order controller transfer function can yield acceptable results as 
discussed below. 

The following loop transfer function is designed: 

1 
Lo(s) = -0.825 · ( )( )' s + 2 s + 1.65 

(34) 

which yields the following strictly proper controller transfer 
function: 

1 
Gc(s) = -0.825 · ---. 

s + 1.625 
(35) 

The frequency responses of L 0 (s) and Gc(s) in (34) and (35) 
are shown in Figs. (10) and (11), respectively. The time re
sponses of x2, u and u for a step disturbance of magnitude 3.00 
are given in Fig. 12, which shows the satisfaction of the time 
domain constraints. However, as can be seen from Fig. 13, the 
impulse response of u changes sign and has an absolute area of 
0.3526 which yields the maximum size of the persistent distur
bance = 

0
_
3
;

26 
= 2.84 < 3.00. Note that for rejecting this size of 

the persistent disturbance, the /1-optimization technique calls 
for a transfer function of at least 30th order. 
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Figure 10: Frequency Response of L0 ( s) - Design 2 



Authorized licensed use limited to: Hochschule Rosenheim (FH). Downloaded on March 22,2021 at 10:23:15 UTC from IEEE Xplore.  Restrictions apply. 

-10 

-20 

' -JO 

! -40 

-so 

-60 

-,ä8 ~=:'.:::'.:::'.::'.'.'.::'.:=:::::;;;;~~'.'.:=::==~~'.:===~=:'.~====~==~=====~~ 
-190 

"; -210 

e_ -220 

j -230 

Q. -240 

-250 

-260 

-270 L.L...J..illllll..--'-....u..u.u.11-..L...1...llJWll.--1...J...Ju..u.111-.__c:t:I:,""".._.L...J...u.J.wl 

.001 .01 
F'~equoncy cra.l/nc] 

10 100 1000 

Figure 11: Frequency Response of G c( s) - Design 2 
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Figure 13: Impulse Responses - Design 2 
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IV. CONCLUSIONS 

A frequency domain design methodology for synthesizing 
controllers that keep the outputs, the control, and the control 
rate of a system within pre-specified bounds while maximizing 
the size of a persistent disturbance input, was reviewed. Ap

plication of the design methodology to a DC motor-speed con
trol system was analyzed and the results were compared with 

those obtained by the 11-optimal technique. The frequency do

main design technique provides important insights to the design 
trade-offs such as the maximum allowable size of the distur
bance, the bandwidth considerations, and the structural com

plexity of the controller transfer function. The design technique 

can achieve the same maximum tolerable disturbance as those 
obtained by 11-method with much lower order controllers. A 

combination of 11-theory with the frequency domain technique 

may provide meaningful solution to the dass of problems stud

ied. Research is underway to establish and use such connec
tions. 
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