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ANALYTICAL ATTITUDE DETERMINATION  

FROM A SPECIFIC RATE PROFILE 

Prof. Dr. Peter Zentgraf1 
The problem dealt with in this paper is the analytical determination of the attitude 
of a rigid body which undergoes a given rate profile. Usually the attitude is 
determined by solving the kinematic differential equation numerically. For long 
lasting movements the outcome can cost computation time plus encountered 
losses in accuracy, which can be disturbing especially in optimization problems. 
This contribution solves the kinematic differential equation for certain rate 
profiles exactly and compares the results in accuracy and computation time with 
the standard procedures. 

INTRODUCTION 

During missions of Earth observation satellites one important task is to scan predefined 
spots on the surface. In order to do so the satellite needs to slew from one particular initial 
attitude and a given rate to the new target defined by a new attitude and a corresponding 
rate, see for instance Figure 1. A method to predict the achieved attitude from a given rate 
profile analytically in a computationally fast way is shown in this paper. 

 

Figure 1: Illustration of a multi-angle observation sequence of PROBA-1 (image from ESA EO-
directory web-portal) 
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PROBLEM STATEMENT 

In this section the following problem is considered: For given initial constraints 𝜔𝜔0,  𝑇𝑇0 at 
time instant t=0s and the final rate 𝜔𝜔1 that is reached at given time instant t=t1 find an 
analytical solution to determine the corresponding final attitude 𝑻𝑻𝟏𝟏 t=t1 as shown in Figure 
2. 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
Let us first consider the change of a vector r(𝑡𝑡) – which can be imagined fixed to a body - 
during a small time period ∆𝒕𝒕 within the inertial frame 𝒊𝒊 due to the rotation around vector 
𝝎𝝎(𝒕𝒕) as shown in Figure 3, which leads to the differential equation eq.(1), 

 
 

 
 

 

 𝒓𝒓′ = 𝝎𝝎� ∙ 𝒓𝒓  (1) 

Note that 𝝎𝝎(𝒕𝒕) is the rotation of the body frame w.r.t. inertial frame and is also expressed 
in the inertial frame. Now consider not only one vector 𝑟𝑟(𝑡𝑡) but three orthonormal vectors 

𝒙𝒙𝒊𝒊 
𝒚𝒚𝒊𝒊 

𝒛𝒛𝒊𝒊 
∆𝒓𝒓 
 
𝒓𝒓(𝒕𝒕 + ∆𝒕𝒕) 

𝝎𝝎(𝒕𝒕) 

𝒓𝒓(𝒕𝒕) 
∆𝒓𝒓 = 𝝎𝝎(𝒕𝒕) × 𝒓𝒓(𝒕𝒕) ∙ ∆𝒕𝒕 
 
 

. 

Figure 3: Change of a vector due to rotation 

𝝎𝝎𝟎𝟎 

𝝎𝝎𝟏𝟏 

𝑻𝑻𝟎𝟎 

𝑻𝑻𝟏𝟏 =? 
Figure 2: Determine final attitude 𝑻𝑻𝟏𝟏 from a rate change of 𝝎𝝎𝟎𝟎 to 𝝎𝝎𝟏𝟏 
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𝑥𝑥𝑏𝑏,𝑦𝑦𝑏𝑏 , 𝑧𝑧𝑏𝑏 spanning the body fixed frame vectors collected in the transformation from the 
body-frame into the inertial frame  

 𝑇𝑇𝑏𝑏𝑖𝑖(𝑡𝑡) = �
| | |

𝑥𝑥𝑏𝑏(𝑡𝑡) 𝑦𝑦𝑏𝑏(𝑡𝑡) 𝑧𝑧𝑏𝑏(𝑡𝑡)
| | |

�  (2) 

 𝑇𝑇𝑏𝑏𝑖𝑖(𝑡𝑡)′ = 𝝎𝝎� ∙ 𝑇𝑇𝑏𝑏𝑖𝑖(𝑡𝑡)  (3) 

Eq. (3) is the so called kinematic differential equation. Note that it differs from the 
corresponding equation in [2], because the derivative refers to the body frame and not to 
the inertial frame as it refers in here, and it is expressed in [2] as 𝑇𝑇𝑖𝑖𝑏𝑏(𝑡𝑡) rather than as 𝑇𝑇𝑏𝑏𝑖𝑖(𝑡𝑡) 
as it is expressed in here. 

The problem is now to solve eq. (3) analytically and to yield an expression 𝑇𝑇𝑖𝑖𝑏𝑏(𝑡𝑡), meaning 
to find an explicit formula which predicts the attitude w.r.t. time t for a given rate profile 
𝝎𝝎(𝒕𝒕). Unfortunately this cannot be solved analytically for any rate profile 𝝎𝝎(𝒕𝒕), but for 
some special rate profiles this can be done. 
A special rate profile 

The proposed method is inspired by [1], in which the closed form solution for an angular 
rate vector of constant magnitude is presented that is slewing at a constant angular rate. 
The method presented here works for any magnitude of the rate vector. 
Consider the profile of the rate vector 𝜔𝜔(𝑡𝑡) starting from 𝑡𝑡 = 0 with 𝝎𝝎𝟎𝟎 as it rotates itself 
about the time fixed rate vector rotation axis defined by the unit vector Ω𝑢𝑢. The 
instantaneous component of 𝝎𝝎(𝑡𝑡) with respect to 𝛀𝛀𝒖𝒖 is vector 𝛀𝛀 as shown in Figure 4. 

So, the vector 𝝎𝝎(𝑡𝑡) is decomposed from Cartesian coordinates 𝜔𝜔𝑥𝑥(𝑡𝑡), 𝜔𝜔𝑦𝑦(𝑡𝑡), 𝜔𝜔𝑧𝑧(𝑡𝑡) into 
cylindrical coordinates, “height” 𝛺𝛺𝑆𝑆(𝑡𝑡) , “radius” 𝒂𝒂(𝑡𝑡) and angle 𝜸𝜸(𝑡𝑡) as shown in Figure 
5.  
Angle 𝜸𝜸 is defined as the integrated rate component of 𝜔𝜔(𝑡𝑡) w.r.t Ω𝑢𝑢, i.e. the scalar product 
of Ω𝑢𝑢 and 𝝎𝝎(𝒕𝒕),  Ω𝑢𝑢𝑇𝑇 ∙ 𝝎𝝎(𝒕𝒕),  in which "T" denotes the “transpose” of a vector, 
 

𝝎𝝎𝒓𝒓(𝑡𝑡) 
𝛽𝛽(𝑡𝑡) 𝒛𝒛𝒔𝒔 

Ω𝑆𝑆(t) ∙ Ω𝑢𝑢 
 

𝒚𝒚𝒔𝒔 
𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 𝑣𝑣𝑟𝑟𝑣𝑣𝑡𝑡𝑣𝑣𝑟𝑟 𝑟𝑟𝑣𝑣𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑣𝑣𝑟𝑟 𝑟𝑟𝑥𝑥𝑟𝑟𝑎𝑎 

𝜶𝜶 

. . 𝜸𝜸(𝑡𝑡) 

𝒙𝒙𝒔𝒔 

𝒙𝒙𝒊𝒊 
𝒚𝒚𝒊𝒊 

𝒛𝒛𝒊𝒊 

Figure 4: Geometry of the considered rate profile 

. 
 𝝎𝝎𝟎𝟎𝒓𝒓 
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 𝜸𝜸(𝑡𝑡) = ∫ 𝜴𝜴𝒖𝒖
𝑇𝑇 ∙ 𝝎𝝎(𝒕𝒕) 𝑑𝑑𝑡𝑡𝑡𝑡

0 = ∫ Ω𝑠𝑠(t) ∙ 𝑑𝑑𝑡𝑡𝑡𝑡
0   (4) 

 
In eq.(4), Ω𝑠𝑠(t) describes the scalar rate component w.r.t the direction of 𝜴𝜴𝒖𝒖, 

 Ω𝑠𝑠(t): = 𝛀𝛀𝐮𝐮
𝑇𝑇 ∙ 𝝎𝝎(𝑡𝑡)  (5) 

 
 

 
 
and Ω𝑠𝑠(t) may have positive or negative sign. The instantaneous rate vector 𝜴𝜴(𝒕𝒕) can also 
be expressed using time invariant unit vector Ω𝑢𝑢 and the time dependent component Ωs(t) 
by 

 𝜴𝜴(𝒕𝒕) = 𝜴𝜴𝒖𝒖 ∙ Ω𝑠𝑠(𝑡𝑡)  (6) 

From definition in eq.(4), angle 𝜸𝜸(𝑡𝑡 = 0) = 0 at the initial rate 𝝎𝝎(𝒕𝒕 = 𝟎𝟎) = 𝝎𝝎𝟎𝟎. Eq. (4) 
shows also that there is no freedom in the choice of 𝜸𝜸(𝑡𝑡): Once Ω𝑠𝑠(t) is selected, the path 
of 𝜸𝜸(𝑡𝑡) is uniquely defined. This is an important restriction: Not all possible rate profiles 
𝜔𝜔(𝑡𝑡) are admitted, because if so then there would be no restriction on 𝜸𝜸(𝑡𝑡). The special 
rate profile allows freedom in the choice of “height”-function ΩS(t) and “radius” 𝒂𝒂(𝑡𝑡), but 
the third dimension of the rate profile, angle 𝜸𝜸(𝑡𝑡), is fixed by the choice of Ωs(t) as shown 
in Figure 6 with initial and final height”-function values, ΩS0 and ΩS1, respectively.

 

𝛺𝛺𝑆𝑆1  𝛺𝛺𝑆𝑆0  

𝑡𝑡1 

𝜸𝜸(𝑡𝑡) ΩS (t) 

 
Figure 6: Angle 𝜸𝜸(𝒕𝒕)-restriction from special cylinder height function 𝛀𝛀𝒔𝒔(𝐭𝐭)  
 
This is the price to be paid to solve the kinematic differential equation; how this is done is 
shown next. 
A new “support frame” 𝑎𝑎 is introduced into which the kinematic differential equation will 
be transformed to. Its basic vectors are defined as follows: 

1. basic vector 𝑦𝑦𝑠𝑠 = Ω𝑢𝑢 

Ω
𝑢𝑢

 Ω 𝑆𝑆
(t

) 

𝒙𝒙𝒔𝒔 

𝒂𝒂(𝑡𝑡) 

𝜸𝜸(𝑡𝑡) 

Figure 5: Transformation from Cartesian coordinates into cylindrical coordinates 

𝝎𝝎𝟎𝟎𝒓𝒓 

𝒚𝒚𝒔𝒔 
 

𝒛𝒛𝒔𝒔 
 

𝛺𝛺𝑆𝑆0 
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2. basic vector 𝑥𝑥𝑠𝑠: Its direction is defined by vector 𝝎𝝎𝟎𝟎𝒓𝒓, which is rotated around 
Ω𝑢𝑢with angle 𝜸𝜸(𝑡𝑡), see Figure 4 and Figure 5. 

3.  basic vector 𝑧𝑧𝑠𝑠 = 𝑥𝑥𝑠𝑠 × 𝑦𝑦𝑠𝑠  

Vector 𝑥𝑥𝑠𝑠 is perpendicular to 𝜴𝜴. The corresponding cylindrical component, 𝑟𝑟(𝑡𝑡), may have 
positive or negative sign, so it is more general than an “always-positive-‘radial’-
component”. Now the “special” rate vectors 𝜔𝜔(𝑡𝑡) can be expressed: 
 

 𝝎𝝎(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) ∙ 𝒙𝒙𝒔𝒔 + Ω𝑠𝑠(𝑡𝑡) ∙ 𝒚𝒚𝒔𝒔  (7) 

The considered rate 𝜔𝜔(𝑡𝑡) is not allowed to ever have a component into 𝒛𝒛𝒔𝒔- direction. 
Component 𝒂𝒂(𝑡𝑡) refers to the direction of 𝒙𝒙𝒔𝒔 and may also have a negative sign, i.e. 
 

 𝑟𝑟(𝑡𝑡) = 𝒙𝒙𝒔𝒔𝑇𝑇 ∙ 𝝎𝝎(𝑡𝑡)   (8) 

Alternatively, the magnitude of 𝑟𝑟(𝑡𝑡), |𝑟𝑟(𝑡𝑡)|, can simply be derived from Figure 4 as 
 

 |𝑟𝑟(𝑡𝑡)| = |𝑎𝑎𝑟𝑟𝑟𝑟 𝛼𝛼 ∙ 𝜔𝜔| = ��𝐸𝐸 − 𝜴𝜴𝒖𝒖 ∙ 𝛀𝛀𝐮𝐮
𝑇𝑇� ∙ 𝝎𝝎(𝑡𝑡)�  (9) 

where 𝐸𝐸 = �
1 0 0
0 1 0
0 0 1

� is the unit matrix.  

 
Solving the kinematic differential equation in the support frame 

Recall the objective which is to solve eq. (1), i.e. to determine vector 𝒓𝒓 in an explicit and 
analytical formula. 
Expressing 𝒓𝒓 in the support frame ” 𝑎𝑎” as vector 𝑣𝑣 and taking the derivative (symbol “ ’ ”) 
with respect to the inertial frame yields 

  𝑟𝑟 = 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣  (10) 

 𝑟𝑟′ = 𝑇𝑇𝑠𝑠𝑖𝑖
′ ∙ 𝑣𝑣 + 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣′  (11) 

In there, the transformation from the support-frame s into the inertial frame i is given by 
the transformation matrix 

 𝑇𝑇𝑠𝑠𝑖𝑖 = �
| | |
𝑥𝑥𝑠𝑠 𝑦𝑦𝑠𝑠 𝑧𝑧𝑠𝑠
| | |

�.  (12) 

Similar to Figure 3 the change of vector 𝑥𝑥𝑠𝑠 , 𝑥𝑥𝑠𝑠′, where 𝑥𝑥𝑠𝑠 rotates around vector Ω(t) yields 
 

 𝑥𝑥𝑠𝑠′ = 𝛺𝛺� ∙ 𝑥𝑥𝑠𝑠  (13) 

and similar for the complete base 𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠, 𝑧𝑧𝑠𝑠 as matrix equation 
 

 𝑇𝑇𝑠𝑠𝑖𝑖
′ = 𝛺𝛺� ∙ 𝑇𝑇𝑠𝑠𝑖𝑖  (14) 

Inserting now eqs. (14) into (11), and then (11) and (10) into (1) gives 
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𝛺𝛺� ∙ 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣 + 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣′ = 𝜔𝜔� ∙ 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣 
                      𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣′ = �𝜔𝜔� − 𝛺𝛺�� ∙ 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣 
                              𝑣𝑣′ = 𝑇𝑇𝑠𝑠𝑖𝑖

𝑇𝑇 ∙ �𝜔𝜔� − 𝛺𝛺�� ∙ 𝑇𝑇𝑠𝑠𝑖𝑖 ∙ 𝑣𝑣 

                              𝑣𝑣′ = 𝑇𝑇𝑠𝑠𝑖𝑖
𝑇𝑇 ∙ �𝜔𝜔� − 𝛺𝛺�� ∙ �

| | |
𝑥𝑥𝑠𝑠 𝑦𝑦𝑠𝑠 𝑧𝑧𝑠𝑠
| | |

� ∙ 𝑣𝑣 

                             𝑣𝑣′ = 𝑇𝑇𝑠𝑠𝑖𝑖
𝑇𝑇 ∙ �

| | |
0 |𝜔𝜔 − Ω| ∙ 𝑧𝑧𝑠𝑠 −|𝜔𝜔 − Ω| ∙ 𝑦𝑦𝑠𝑠
| | |

� ∙ 𝑣𝑣 

                             𝑣𝑣′ = �
− 𝑥𝑥𝑠𝑠𝑇𝑇 −
− 𝑦𝑦𝑠𝑠𝑇𝑇 −
− 𝑧𝑧𝑠𝑠𝑇𝑇 −

� ∙ �
| | |
0 𝑧𝑧𝑠𝑠 −𝑦𝑦𝑠𝑠
| | |

� ∙ |𝜔𝜔 − Ω| ∙ 𝑣𝑣 

                             𝑣𝑣′(𝑡𝑡) = �
0 0 0
0 0 −1
0 1 0

� ∙ 𝒂𝒂(𝑡𝑡) ∙ 𝑣𝑣(𝑡𝑡).  (15) 

Eq. (15) can now be solved analytically, since the involved matrix �
0 0 0
0 0 −1
0 1 0

� is not 

depending on time. Rearranging yields 
 

             𝑣𝑣(𝑡𝑡) = 𝑟𝑟
∫ ��

0 0 0
0 0 −1
0 1 0

�∙𝒂𝒂(𝑡𝑡)� 𝑑𝑑𝑡𝑡𝑡𝑡
0

∙ 𝑣𝑣(𝑡𝑡 = 0)�������
=:𝑣𝑣0

= 𝑟𝑟
�
0 0 0
0 0 −1
0 1 0

�∙∫ �𝒂𝒂(𝑡𝑡)� 𝑑𝑑𝑡𝑡𝑡𝑡
0���������
=:𝛽𝛽(𝑡𝑡) ∙ 𝑣𝑣0.  (16) 

The exponential matrix in eq. (16) can be solved analytically to 
 

 𝑣𝑣(𝑡𝑡) = �
1 0 0
0 cos𝛽𝛽(𝑡𝑡) −sin𝛽𝛽(𝑡𝑡)
0 sin𝛽𝛽(𝑡𝑡) cos𝛽𝛽(𝑡𝑡)

�
�����������������

=:𝑇𝑇𝑥𝑥,−𝛽𝛽

∙ 𝑣𝑣0;  (17) 

the definition of the rotation, 𝑇𝑇𝑥𝑥,−𝛽𝛽 , contains a minus sign in order to be compatible with 
the Euler rotation matrices. Thus, the change of vector 𝑣𝑣(𝑡𝑡) is a pure rotation (rotation 
matrix 𝑇𝑇𝑥𝑥,−𝛽𝛽) with angle 𝛽𝛽 about the x-axis of the support frame, see also Figure 4, where 
𝛽𝛽 is defined as 

 𝛽𝛽(𝑡𝑡) = ∫ 𝒂𝒂(𝑡𝑡) ∙ 𝑑𝑑𝑡𝑡𝑡𝑡
0 .  (18) 

Inserting the solution 𝑣𝑣(𝑡𝑡) in eq. (10) yields  
 

 𝑟𝑟(𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑖𝑖(𝑡𝑡) ∙ 𝑇𝑇𝑥𝑥,−𝛽𝛽 ∙ 𝑇𝑇𝑠𝑠𝑖𝑖
𝑇𝑇(𝑡𝑡 = 0) ∙ 𝑟𝑟0.  (19) 

The supporting frame is rotating with angle 𝛾𝛾 around the local y-axis and can be expressed 
as 
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 𝑇𝑇𝑠𝑠𝑖𝑖(𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ �
cos 𝛾𝛾 0 sin𝛾𝛾

0 1 0
−sin𝛾𝛾 0 cos𝛾𝛾

�
�������������

𝑇𝑇𝑦𝑦,−𝛾𝛾

.  (20) 

Inserting eq. (20) in (19) gives finally 
 

 𝒓𝒓(𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ 𝑇𝑇𝑦𝑦,−𝛾𝛾(𝑡𝑡) ∙ 𝑇𝑇𝑥𝑥,−𝛽𝛽(𝑡𝑡) ∙ 𝑇𝑇𝑠𝑠𝑖𝑖
𝑇𝑇(0) ∙ 𝒓𝒓𝟎𝟎.  (21) 

This means, the new direction of 𝑟𝑟(𝑡𝑡) can be seen within the supporting frame as a rotation 
of the initial vector around the local x-axis by angle 𝛽𝛽 and then as a rotation around the y-
axis by angle 𝛾𝛾. 
Extending according to (2) gives then finally 

 𝑇𝑇𝑏𝑏𝑖𝑖(𝑡𝑡) = 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ 𝑇𝑇𝑦𝑦,−𝜸𝜸(𝑡𝑡) ∙ 𝑇𝑇𝑥𝑥,−𝛽𝛽(𝑡𝑡) ∙ 𝑇𝑇𝑠𝑠𝑖𝑖
𝑇𝑇(0) ∙ 𝑇𝑇𝑏𝑏𝑖𝑖0.  (22) 

The rates can be expressed similarly: Inserting eq. (20) into eq.(7) to transform the rate 
from the support frame back into the inertial frame yields  

 𝝎𝝎(𝑡𝑡) = 𝛀𝛀𝒖𝒖 ∙ Ω𝑠𝑠(𝑡𝑡) + 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ 𝑇𝑇𝑦𝑦,−𝜸𝜸(𝑡𝑡) ∙ �
𝑟𝑟(𝑡𝑡)

0
0
�.  (23) 

For t=0 eq. (23) simplifies as seen in Figure 4 to 
 

 𝝎𝝎(0) = Ω𝑢𝑢 ∙ Ω𝑠𝑠(0) + 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ �
𝑟𝑟(0)

0
0

� = 𝛀𝛀𝟎𝟎 + 𝑇𝑇𝑠𝑠𝑖𝑖(0) ∙ �
|𝜔𝜔0𝑟𝑟|

0
0

� = 𝛀𝛀𝟎𝟎 + 𝜔𝜔0𝑟𝑟 = 𝜔𝜔0. (24) 

thus yielding the initial rate 𝝎𝝎𝟎𝟎. 
Preselecting initial rate 𝝎𝝎𝟎𝟎, final rate 𝝎𝝎𝟏𝟏 and slew time 𝒕𝒕𝟏𝟏 

Selecting any rotation vector 𝜴𝜴𝒖𝒖 determines initial and final cylindrical coordinates, see 
Figure 4 and Figure 7, because then 

• the rotation angle 𝜸𝜸(𝑡𝑡1) is fixed, 
• the radial rate component 𝑟𝑟0 = 𝑟𝑟(0) (and thus namely 𝒙𝒙𝒔𝒔(𝑡𝑡 = 0) in eq. (12)) and 𝑟𝑟1 =

𝑟𝑟(𝑡𝑡1) are fixed, 
• the choice of any 𝜴𝜴𝒖𝒖 fixes by itself the axial component of 𝝎𝝎𝟏𝟏, i.e. Ω𝑠𝑠1 = Ω𝑠𝑠(𝑡𝑡1) in 

eq. (23) (and so 𝒚𝒚𝒔𝒔(𝑡𝑡 = 0)) and also the axial component of 𝝎𝝎𝟎𝟎 i.e. Ω𝑠𝑠0 = Ω𝑠𝑠(0) in 
eq. (23). 

In addition, the axial scalar rate component Ω𝑠𝑠 and the axial rotation angle component 
rotation angle 𝜸𝜸(𝑡𝑡1) are interconnected by the integral restriction eq. (4), i.e. 𝜸𝜸(𝑡𝑡1) =
∫ Ω𝑠𝑠(t) ∙ 𝑑𝑑𝑡𝑡𝑡𝑡1
0 . This means, that for a given slew time 𝑡𝑡1 the rate component Ωs(t) needs to 

be shaped accordingly such that its integral is equal to angle 𝜸𝜸(𝑡𝑡1). This also means that 
only two of three cylindrical coordinates are independent. For the radial rate components 
𝑟𝑟(0) and 𝑟𝑟(𝑡𝑡1) a similar integral-restriction does not exist. 
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𝝎𝝎𝟎𝟎  
𝜴𝜴𝒖𝒖  

𝝎𝝎𝟏𝟏  

𝜸𝜸 𝒂𝒂𝟎𝟎  

𝒂𝒂𝟏𝟏  

𝛺𝛺𝑆𝑆1  

𝛺𝛺𝑆𝑆0  

 
Figure 7:Preselecting initial rate 𝝎𝝎𝟎𝟎, final rate 𝝎𝝎𝟏𝟏 and slew time 𝒕𝒕𝟏𝟏 
with corresponding scalar cylinder coordinates 𝜸𝜸, 𝒂𝒂𝟎𝟎, 𝒂𝒂𝟏𝟏,𝛀𝛀𝒔𝒔𝟎𝟎, 𝛀𝛀𝒔𝒔𝟏𝟏 

Determination of a unit vector 𝛀𝛀𝒖𝒖 for linear change restriction. 

To simplify the transformation from Cartesian to cylindrical coordinates it is shown that 
for many cases a unit rotation rate vector 𝜴𝜴𝒖𝒖 can be found that slews the rate vector 𝝎𝝎(𝑡𝑡) 
from 𝝎𝝎(0)=𝜔𝜔0 to 𝝎𝝎(𝑡𝑡1) = 𝝎𝝎𝟏𝟏 about the unit rotation rate vector 𝜴𝜴𝒖𝒖 while the cylinder 
coordinates Ω𝑠𝑠(t) and 𝑟𝑟(𝑡𝑡) undergo a linear time change as shown in Figure 8.  
 

𝛺𝛺𝑆𝑆0  
Ωs (𝑡𝑡) 

𝛺𝛺𝑆𝑆1  

𝑡𝑡1 

𝜸𝜸 

𝒂𝒂𝟎𝟎 

𝑟𝑟(𝑡𝑡) 

𝒂𝒂𝟏𝟏 

𝑡𝑡1 

𝜷𝜷 

 
Figure 8: Consideration of linear change in the cylinder coordinates 𝛀𝛀𝒔𝒔(𝐭𝐭) and 𝒂𝒂(𝒕𝒕) 
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From Figure 6, the usual cosine law can be written as  
 

𝝎𝝎𝟎𝟎𝒓𝒓
𝑻𝑻 ∙ 𝝎𝝎𝟏𝟏𝒓𝒓 = |𝝎𝝎𝟎𝟎𝒓𝒓| ∙ |𝝎𝝎𝟏𝟏𝒓𝒓| ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 𝜸𝜸 (25)  

where 
𝝎𝝎𝟎𝟎𝒓𝒓 = �𝑬𝑬 − 𝛀𝛀𝒖𝒖 ∙ 𝛀𝛀𝒖𝒖

𝑻𝑻� ∙ 𝝎𝝎𝟎𝟎 (26)  

𝝎𝝎𝟏𝟏𝒓𝒓 = �𝑬𝑬 − 𝛀𝛀𝒖𝒖 ∙ 𝛀𝛀𝒖𝒖
𝑻𝑻� ∙ 𝝎𝝎𝟏𝟏.  (27)  

Inserting eqs. (27)-(28) into eq. (26) yields 
 
𝝎𝝎𝟎𝟎

𝑻𝑻 ∙ �𝑬𝑬 −𝛀𝛀𝒖𝒖 ∙ 𝛀𝛀𝒖𝒖
𝑻𝑻� ∙ 𝝎𝝎𝟏𝟏 =∙ �𝝎𝝎𝟎𝟎

𝑻𝑻 ∙ �𝑬𝑬 −𝛀𝛀𝒖𝒖 ∙ 𝛀𝛀𝒖𝒖
𝑻𝑻� ∙ 𝝎𝝎𝟎𝟎 ∙ 𝝎𝝎𝟏𝟏

𝑻𝑻 ∙ �𝑬𝑬 −𝛀𝛀𝒖𝒖 ∙ 𝛀𝛀𝒖𝒖
𝑻𝑻� ∙ 𝝎𝝎𝟏𝟏 ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 𝜸𝜸 

(28)  

and  
𝝎𝝎𝟎𝟎

𝑻𝑻𝝎𝝎𝟏𝟏 − 𝛀𝛀𝒖𝒖
𝑻𝑻𝝎𝝎𝟎𝟎 𝛀𝛀𝒖𝒖

𝑻𝑻𝝎𝝎𝟏𝟏 =∙ ��𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟎𝟎 −𝛀𝛀𝒖𝒖

𝑻𝑻𝝎𝝎𝟎𝟎 𝛀𝛀𝒖𝒖
𝑻𝑻𝝎𝝎𝟎𝟎� ∙ (𝝎𝝎𝟏𝟏

𝑻𝑻𝝎𝝎𝟏𝟏 − 𝛀𝛀𝒖𝒖
𝑻𝑻𝝎𝝎𝟏𝟏 𝛀𝛀𝒖𝒖

𝑻𝑻𝝎𝝎𝟏𝟏) ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 𝜸𝜸 
(29)  

Instead of solving eq. (30) directly for 𝛀𝛀𝒖𝒖 the abbreviations 
𝒙𝒙 ≔  𝛀𝛀𝒖𝒖

𝑻𝑻𝝎𝝎𝟎𝟎 (30)  

𝒚𝒚 ≔  𝛀𝛀𝒖𝒖
𝑻𝑻𝝎𝝎𝟏𝟏 (31)  

for the unknown scalar vector products are to be determined. Then eq. (30) can be written 
as 

𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟏𝟏 − 𝒙𝒙 ∙ 𝒚𝒚 =∙ �(𝝎𝝎𝟎𝟎

𝑻𝑻𝝎𝝎𝟎𝟎 − 𝐱𝐱𝟐𝟐) ∙ (𝝎𝝎𝟏𝟏
𝑻𝑻𝝎𝝎𝟏𝟏 − 𝒚𝒚𝟐𝟐) ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 𝜸𝜸. 

(32)  

Allowing only linear changes in the cylindrical coordinates angle 𝜸𝜸 can be expressed 
according to eq.(5) and eqs. (31),(32) 

𝜸𝜸 = 𝒙𝒙+𝒚𝒚
𝟐𝟐
𝒕𝒕𝟏𝟏. (33)  

Inserting eq. (34) into (33) yields the non-linear equation to be solved for the unknowns 
𝐱𝐱,𝒚𝒚: 

𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟏𝟏 − 𝒙𝒙 ∙ 𝒚𝒚

�(𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟎𝟎 − 𝒙𝒙𝟐𝟐) ∙ (𝝎𝝎𝟏𝟏

𝑻𝑻𝝎𝝎𝟏𝟏 − 𝒚𝒚𝟐𝟐)

=∙ 𝒄𝒄𝒄𝒄𝒔𝒔 �
𝒙𝒙 + 𝒚𝒚
𝟐𝟐 𝒕𝒕𝟏𝟏�  (34) 

 

To determine all allowable values for 𝐱𝐱,𝒚𝒚 analytically does not seem to be possible. In 
order to simplify eq. (35) the value of 𝒚𝒚 is set to zero, 

𝛀𝛀𝒖𝒖 

𝛀𝛀(t1) 

𝝎𝝎𝟏𝟏 

𝝎𝝎𝟏𝟏𝒓𝒓 
 

𝜸𝜸(𝑡𝑡1) 

Figure 9: Transformation from Cartesian coordinates into cylindrical coordinates  

𝝎𝝎𝟎𝟎𝒓𝒓 
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𝒚𝒚 = 𝟎𝟎, (35)  

to yield for eq. (35) 
𝝎𝝎𝟎𝟎

𝑻𝑻𝝎𝝎𝟏𝟏

�(𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟎𝟎 − 𝒙𝒙𝟐𝟐) ∙ 𝝎𝝎𝟏𝟏

𝑻𝑻𝝎𝝎𝟏𝟏�����������������
≔𝒇𝒇𝟏𝟏(𝒙𝒙)

=∙ 𝒄𝒄𝒄𝒄𝒔𝒔 �
𝒙𝒙
𝟐𝟐 ∙ 𝒕𝒕𝟏𝟏����������

≔𝒇𝒇𝟐𝟐(𝒙𝒙)

  (36) 
 

Unfortunately, for these kind of equations no analytical solution for 𝐱𝐱 is known. However, 
with the little restriction 

𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟏𝟏 > 𝟎𝟎  (37)  

it is clearly the case that the left-hand-side in eq. (37), function 𝒇𝒇𝟏𝟏(𝒙𝒙), always intersects at 
least once with function 𝒇𝒇𝟐𝟐(𝒙𝒙), the right-hand-side of eq. (37), because: 

1. Function 𝒇𝒇𝟏𝟏(𝒙𝒙)>0 and the function value is real for 𝐱𝐱 < |𝝎𝝎𝟎𝟎| 
2. The initial value of 𝒇𝒇𝟏𝟏(𝒙𝒙)is smaller one, 𝒇𝒇𝟏𝟏(𝒙𝒙 = 𝟎𝟎) = 𝒄𝒄𝒄𝒄𝒔𝒔(𝜶𝜶) < 𝟏𝟏 (see Figure 4) 
3. The functional value of 𝒇𝒇𝟏𝟏(𝒙𝒙) approaches infinity as 𝒙𝒙 approaches |𝝎𝝎𝟎𝟎|, 

𝐥𝐥𝐥𝐥𝐥𝐥
𝒙𝒙→|𝝎𝝎𝟎𝟎|

𝒇𝒇𝟏𝟏(𝒙𝒙) → +∞ 

4. The initial value of 𝒇𝒇𝟐𝟐(𝒙𝒙), 𝒇𝒇𝟐𝟐(𝒙𝒙 = 𝟎𝟎), is equal to one and th(38)us larger than 

𝒇𝒇𝟏𝟏(𝒙𝒙 = 𝟎𝟎), i.e. 𝒇𝒇𝟏𝟏(𝒙𝒙 = 𝟎𝟎) < 𝒇𝒇
𝟐𝟐
(𝒙𝒙 = 𝟎𝟎). 

Example 

In order to demonstrate the solving of eq. (37) the following values have been used: 

𝝎𝝎𝟎𝟎
𝑻𝑻 =

𝝅𝝅
𝟏𝟏𝟏𝟏𝟎𝟎 ∙

[+𝟐𝟐 + 𝟑𝟑 + 𝟏𝟏]𝑻𝑻  
𝒅𝒅𝒅𝒅𝒅𝒅 
𝒔𝒔𝒅𝒅𝒄𝒄  (38)  

𝝎𝝎𝟏𝟏
𝑻𝑻 =

𝝅𝝅
𝟏𝟏𝟏𝟏𝟎𝟎 ∙

[−𝟐𝟐 + 𝟓𝟓 − 𝟏𝟏]𝑻𝑻  
𝒅𝒅𝒅𝒅𝒅𝒅 
𝒔𝒔𝒅𝒅𝒄𝒄  (39)  

with 𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟏𝟏 > 𝟎𝟎 and a slewing time of 𝒕𝒕𝟏𝟏 = 𝟐𝟐𝟎𝟎 𝒔𝒔.  

Using MATLAB function fzero [4] to solve for 𝒇𝒇𝟏𝟏(𝒙𝒙) − 𝒇𝒇𝟐𝟐(𝒙𝒙) = 𝟎𝟎 and initial guess 𝒙𝒙𝟎𝟎 =
𝟎𝟎 the solution 𝒙𝒙𝒔𝒔 = 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏 is retained. In Figure 7 the intersection of functions 𝒇𝒇𝟏𝟏(𝒙𝒙) 
and 𝒇𝒇𝟐𝟐(𝒙𝒙) is visualized for different values of 𝒕𝒕𝟏𝟏 in order to demonstrate that respecting eq. 
(38) there is always at least one solution to solve eq. (37). 
 
Determination of rotation vector 𝛀𝛀𝒖𝒖 

To finalize a unit rotation vector 𝛀𝛀𝒖𝒖 satisfying eqs. (31) and (32) needs to be determined, 
i.e. 𝛀𝛀𝒖𝒖 needs to satisfy 

 �− 𝝎𝝎𝟎𝟎
𝑻𝑻 −

− 𝝎𝝎𝟏𝟏
𝑻𝑻 −

� ∙ 𝛀𝛀𝒖𝒖 = �𝒙𝒙𝒔𝒔𝟎𝟎 � 
(40)  

and of course 
|𝛀𝛀𝒖𝒖| = 𝟏𝟏. (41)  
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Figure 10: Visualization of the solutions of the nonlinear-equation (37) 

 
The condition for the solution of eqs. (40)-(42) can be visualized by looking at the  𝝎𝝎𝟎𝟎-
𝝎𝝎𝟏𝟏-plane “from top” in Figure 8: The dash-dot lines there show the possible solutions for 
any vectors 𝛀𝛀𝒖𝒖 no matter their magnitude, and the intersection of those visualizes the 
solution. As long as the vectors  𝝎𝝎𝟎𝟎 and 𝝎𝝎𝟏𝟏 are not parallel this intersection exists; if they 
are parallel the rate vector is constant in its direction and the attitude determination can be 
solved analytically as shown in eq. (15).  
 

 
 
The magnitude of the projection of rotation vector 𝛀𝛀𝒖𝒖 within the  𝝎𝝎𝟎𝟎-𝝎𝝎𝟏𝟏-plane, 𝛀𝛀𝟏𝟏𝟐𝟐, needs 
to be smaller than one – otherwise 𝛀𝛀𝒖𝒖 may not have unity magnitude. From triangle 
trigonometry in Figure 8 the condition  
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|𝛀𝛀𝟏𝟏𝟐𝟐| =
𝒙𝒙𝒔𝒔

|𝝎𝝎𝟎𝟎|𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶 

 
 𝜶𝜶 𝜶𝜶 

𝝎𝝎𝟎𝟎 
𝝎𝝎𝟏𝟏 

Figure 11: Construction of projection of rotation vector 𝛀𝛀,  𝛀𝛀𝟏𝟏𝟐𝟐, into ω0-ω1-plane 

𝝎𝝎𝟎𝟎
𝑻𝑻 ∙ 𝛀𝛀𝒖𝒖 = 𝒙𝒙𝒔𝒔 

𝝎𝝎𝟏𝟏
𝑻𝑻 ∙ 𝛀𝛀𝒖𝒖 = 𝟎𝟎 
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|𝛀𝛀𝟏𝟏𝟐𝟐| =
𝒙𝒙𝒔𝒔

|𝝎𝝎𝟎𝟎|𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶 < 𝟏𝟏 (42)  

needs to hold. It needs to be checked if this condition matches also with the equation to 
determine 𝒙𝒙𝒔𝒔 in eq. (37). Rearranging (43) yields 

             𝒙𝒙𝒔𝒔 < |𝝎𝝎𝟎𝟎|𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶   
                  𝒙𝒙𝒔𝒔𝟐𝟐 < |𝝎𝝎𝟎𝟎|𝟐𝟐(𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶)𝟐𝟐   

                 −𝒙𝒙𝒔𝒔𝟐𝟐 > −|𝝎𝝎𝟎𝟎|𝟐𝟐(𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶)𝟐𝟐   

               |𝝎𝝎𝟎𝟎|𝟐𝟐 − 𝒙𝒙𝒔𝒔
𝟐𝟐 > |𝝎𝝎𝟎𝟎|𝟐𝟐(𝟏𝟏 − (𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶)𝟐𝟐)   

(𝒄𝒄𝒄𝒄𝒔𝒔 𝜶𝜶)𝟐𝟐 < 𝟏𝟏 − 𝒙𝒙𝒔𝒔𝟐𝟐

|𝝎𝝎𝟎𝟎|𝟐𝟐
    . (43) 

 

From eq. (37) to determine 𝒙𝒙𝒔𝒔 another bound on (𝒄𝒄𝒄𝒄𝒔𝒔 𝜶𝜶)𝟐𝟐 can be derived:  
𝝎𝝎𝟎𝟎

𝑻𝑻𝝎𝝎𝟏𝟏

|𝝎𝝎𝟏𝟏| = �(𝝎𝝎𝟎𝟎
𝑻𝑻𝝎𝝎𝟎𝟎 − 𝒙𝒙𝒔𝒔𝟐𝟐) ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 �

𝒙𝒙𝒔𝒔
𝟐𝟐 ∙ 𝒕𝒕𝟏𝟏�   

                   𝒄𝒄𝒄𝒄𝒔𝒔 𝜶𝜶 = ��𝟏𝟏− 𝒙𝒙𝒔𝒔𝟐𝟐

|𝝎𝝎𝟎𝟎|𝟐𝟐
� ∙ 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒙𝒙𝒔𝒔

𝟐𝟐
∙ 𝒕𝒕𝟏𝟏� < ��𝟏𝟏− 𝒙𝒙𝒔𝒔𝟐𝟐

|𝝎𝝎𝟎𝟎|𝟐𝟐
�   

                                 (𝒄𝒄𝒄𝒄𝒔𝒔 𝜶𝜶)𝟐𝟐                                                      < 𝟏𝟏 − 𝒙𝒙𝒔𝒔𝟐𝟐

|𝝎𝝎𝟎𝟎|𝟐𝟐
     (44) 

 

Since eqs. (44) and (45) match exactly for the solution 𝒙𝒙𝒔𝒔 that solves eq. (37) 𝒙𝒙𝒔𝒔 has also 
the proper value to form a unit rotation vector 𝛀𝛀𝒖𝒖 matching eqs. (31),(32). The unit rotation 
vector 𝛀𝛀𝒖𝒖 can now be derived from Figure 8 to be 

𝛀𝛀𝒖𝒖 = 𝛀𝛀𝟏𝟏𝟐𝟐 +
𝝎𝝎𝟎𝟎 ∙� 𝝎𝝎𝟏𝟏

|𝝎𝝎𝟎𝟎 ∙� 𝝎𝝎𝟏𝟏| ∙
�𝟏𝟏 −

𝒙𝒙𝒔𝒔𝟐𝟐
(𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶)𝟐𝟐 

(45) 
 

with 
𝛀𝛀𝟏𝟏𝟐𝟐 = 𝝎𝝎𝟏𝟏�

|𝝎𝝎𝟏𝟏|
∙ 𝝎𝝎𝟎𝟎∙� 𝝎𝝎𝟏𝟏

|𝝎𝝎𝟎𝟎∙� 𝝎𝝎𝟏𝟏|
∙ 𝒙𝒙𝒔𝒔
𝒔𝒔𝒊𝒊𝒔𝒔 𝜶𝜶

. (46) 
 

while the “~” corresponds to the matrix formulation of a cross product between two vectors 
𝒂𝒂 and 𝒃𝒃 , i.e. 𝒂𝒂 × 𝒃𝒃 =:𝒂𝒂� ∙ 𝒃𝒃 where 

𝒂𝒂� ≔ �
𝟎𝟎 −𝑟𝑟𝑧𝑧 +𝑟𝑟𝑦𝑦

+𝑟𝑟𝑧𝑧 𝟎𝟎 −𝑟𝑟𝑥𝑥
−𝑟𝑟𝑦𝑦 +𝑟𝑟𝑥𝑥 𝟎𝟎

� (47) 
 

Inserting the values of the example from eqs. (39), (40), the slewing time 𝒕𝒕𝟏𝟏 = 𝟐𝟐𝟎𝟎 𝒔𝒔 and the 
solution 𝒙𝒙𝒔𝒔from Figure 7 into eq. (47) yields 
 

𝛀𝛀𝒖𝒖
𝑻𝑻 = [−0.1142    0.1507    0.9820]𝑇𝑇 (48)  

SIMULATION RESULTS 

Now that the rotation vector 𝛀𝛀𝒖𝒖 is determined (see Figure 9) the rate can be transformed 
into cylindrical coordinates as shown in Figure 6. Inserting eq. (49), 𝒕𝒕𝟏𝟏 = 𝟐𝟐𝟎𝟎 𝒔𝒔 and the 
solution 𝒙𝒙𝒔𝒔 into eqs. (27), (28) yields 
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𝝎𝝎𝟎𝟎𝒓𝒓 = [0.0510    0.0311    0.0012],𝝎𝝎𝟏𝟏𝒓𝒓 = [0.0349    0.0873   − 0.0175]. (49)  

Then further inserting eq. (49), 𝒕𝒕𝟏𝟏 = 𝟐𝟐𝟎𝟎 𝒔𝒔 and the solution 𝒙𝒙𝒔𝒔 into eqs.(34) and (5) and use 
eq. (50) as in Figure 4 yields 
 

𝜸𝜸(0) = 0, 𝜸𝜸(𝑡𝑡1) = 𝑥𝑥𝑠𝑠
𝑡𝑡1
𝟐𝟐

= 1,4101 (50)  

𝒂𝒂(0) = |𝝎𝝎𝟎𝟎𝒓𝒓| = 0,1532,𝒂𝒂(𝑡𝑡1) = |𝝎𝝎𝟏𝟏𝒓𝒓| = 0,0956 (51)  

Ω𝑠𝑠(0) = 0,Ω𝑠𝑠(𝑡𝑡1) = 0,14101. (52)  
The values in between those defining lower and upper limits in eqs. (51)-(53) are linearly 
interpolated and a rate profile in Cartesian coordinates is computed according to eq. (23). 
The result is shown in Figure 10. From this rate profile the attitude transformation matrix 
is computed in three ways: 

1. Analytically as in eq. (22) (here 𝑇𝑇𝑏𝑏𝑖𝑖0 = 𝐸𝐸 )  
2. Numerically with MATLAB-function ode45, see [4] 
3. Numerically with MATLAB-function ode113, see [4] 

The results are transformed into Euler angles in sequence “1-2-3” and is shown in Figure 
11. In there, as an error-measure the magnitude of the numerical transformation against the 
inverse analytical transformation is given which shows a very tiny error w.r.t. the analytical 
solution, maximal 10-10 deg. The largest error value over time is taken as an accuracy 
measure for further experiments. 

  
Figure 12: Progression of rates from initial rate ω0 until final rate ω1 
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Figure 13: Rate progression of the simulation example 

 
Figure 14: Attitude-progression of the simulation example 

Summary of a complete simulation campaign 

In order to investigate the computation time (using a modern Intel core i7 processor) and 
accuracy benefits of the proposed method the results for slew times between 0,1 s and 100 
s are displayed in Figure 12 and Figure 13. It shows that the computation time of the 
analytical solution is by a factor of 100 faster than the numerical solutions. 
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Figure 15: Computation time needed for analytical and numerical simulation 

 
Figure 16: Accuracy received for numerical simulations 

CONCLUSIONS 

A method to compute the attitude evolution from specific slewing rate profiles is presented. 
For theses profiles the kinematic differential equation can be solved analytically. It avoids 
time consuming numerical solving of the kinematic differential equation and is about a 100 
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times faster. The method is transparent a needs basic mathematical concepts. It can be used 
for optimizations of rate and/or attitude behavior and for the planning of corresponding 
trajectories. 
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