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IMPACT OF ELECTRIC PROPULSION UNCERTAINTY 
ON ORBIT PREDICTION 

Peter Zentgraf, *Sven Erb† 

This paper analyses the achievable performance of the orbit prediction for a geo-
stationary satellite using clusters of electrical propulsion (EP) thrusters for sta-
tion-keeping and a star tracker based attitude control system. The challenge in 
the orbit prediction is that the real electrical propulsion thrust is known with li-
mited accuracy only. In combination with thrust pointing errors, these inaccura-
cies can accumulate to large orbit position errors during long low thrust burn 
arcs. The discrepancy between real and predicted satellite position is determined 
in terms of probability and as a worst case scenario. 

INTRODUCTION 

Background and Objective 

This paper analyses the achievable performance of the orbit propagator of a typical telecom 
satellite using Electric Propulsion (EP). The orbit propagator is meant to be a mathematical model 
predicting the position of the satellite. Furthermore, the attitude reference profile for the Star 
tracker is derived from it. This model has the following three independent error sources wrt the 
true satellite position: 

1. Modeling errors from the natural disturbances like Earth potential, Sun and moon gravi-
tation 

One complete SKM cycle shall last 7 days, 6 days of firing and 1 day for orbit deter-
mination. 

2. Initialisation errors coming from orbit determination of the ground station 
The orbit determination shall last 1 day only. 

3. Modeling errors from the satellites own electrical propulsion (EP) thruster forces 

The first two error sources do not depend on the type of satellite propulsion system and can be 
well quantified. However, the modeling errors from the EP thrusters have to be analysed carefully 
taking into account the station keeping maneuver (SKM) scenario as well as the expected thruster 
performance relevant for the addressed problem. Thruster performance is here understood as the 
ability of a thruster to produce a real force which is as close as possible to the “expected” force, 
i.e. to the nominal force vector. The deviation from the nominal force vector of each thruster is 
characterized by 2 scalar parameters: 
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1. A pointing accuracy, i.e. the angular deviation from the nominal vector, of 0.5 deg 
2. The thrust level accuracy, i.e. the deviation in magnitude from the nominal vector, of 

commonly 1% from the nominal force 
Therefore, one can think of the EP thruster forces as a dominant nominal contributor plus a 

small, unknown-but-bounded parasitic force.  

The discrepancy between real and predicted satellite position is compared in two ways:  

First, based on linearized model equations which relate the thrust forces to the deviation of the 
satellite from its nominal position, the parametric worst case deviation is computed that can occur 
where it is assumed, that within their specified limits in terms of thrust level and pointing accu-
racy all thrusters can vary.  

Secondly, in a probabilistic approach the thruster uncertainties are modeled as normal distri-
buted random numbers and their limits are treated as 3-σ intervals. From that, the bounds on the 
lateral, longitudinal and radial angles as well as on the satellite position deviation is for a prob-
ability confidence interval of 99.7 % - corresponding to the +/- 3-σ interval – is computed. 

The main part of this paper investigates the effect of the unknown-but-bounded forces during 
station keeping maneuvers (SKM) on the real position of a satellite in GEO with respect to the 
model-predicted one. Then, the sum of all error sources in orbit determination is estimated and 
the feasibility of the planned SKM is evaluated. 

Illustrative Example 

The discrepancy between real and predicted satellite position shall be illustrated on a simpli-
fied example, in which a mass m shall be accelerated by means of a force f, which has a known 
part f0 and an unknown part f0 λ, see Figure 1. 

 
Figure 1: Simplified Example for Position Error of a Mass with Translational Acceleration 

If the mass is constantly accelerated for a time period t, the final displacement s will be 
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in which Δv is the average speed during the acceleration period t. If the force f has a nominal 
part f0 and an unknown-but-bounded part λ, 

 ( )λ+= 10ff (2)

the difference between the real end position s and the predicted end position s0 , Δs, can be 
written as 
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This means, for the same the speed change Δv, the larger the mass and the uncertainty the lar-
ger is the position error between reality and prediction. 

Inserting in Eq.(1) the values of m=1850 kg, f0=10 mN, λ=0.01, Δv=1 m/s yields a parametric 
worst case position error of 

 kmswc 6.3=Δ (4)

In the second approach, when the value λ=0.01 is treated as 3-σ interval bound on a randomly 
distributed thrust error with zero mean and a variance of λ/3, the statistical variation in the final 
position of m has (with some approximation) in a probability confidence interval of 99.7 % the 
value of 

 kms 6.3*3 =Δσ (5)

In this simple translational example, the values from Eq.(4) is the same as the one in Eq.(5); 
the values shall just illustrate the approach and are not considered as a “result” of the addressed 
problem. In general, the values are not equal for the “real” problem presented in the next sections, 
in which 3-dimensional rotational dynamics with several uncertain thrust forces are considered. 

REQUIREMENTS AND PERFORMANCE ON ORBIT DETERMINATION 

The overall requirement on the accuracy of the satellite position shall be the following:  

Requ.1: In case of an inertially referenced AOCS pointing system, the true longitudi-
nal position of the spacecraft must be possible to predict with an accuracy of 8 km  over a 
station keeping cycle. 

Even larger errors can be tolerated as far as the pointing budget is concerned. An error of 0.02 
deg per axis can typically be tolerated for pointing, and this error corresponds to 15 km per axis. 
However, in order to let the satellite stay in a +/- 37 km box a position knowledge of 8 km is ad-
visable. 

As already mentioned before, the orbit propagator has the following three independent error 
sources wrt the true satellite position: 

1. Modeling errors of the natural disturbances like Earth potential, Sun and moon gravi-
tation and the model dynamics itself 

The accuracy of the model after 7 days of free drift is of interest.  

In 1, page 41, the modeling accuracy of an orbit propagator for a chemical propul-
sion (CP) based satellite in free drift has been computed and compared with meas-
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ured data from the SSC ground station Esrange, Sweden. For that purpose, the orbit 
propagator is realized as a linear state space model of 6th order, details are given also 
in 1, chapter 3, models of this kind have been flown on many satellites using CP. The 
model has been initialised with measured data from the ground station and the predic-
tion has been compared with the real data for 8 days.  

The result was a total divergence of 1.85 km after 8 days, including modeling er-
rors as well as initialisation errors. The corresponding initialisation error along 
track and cross track together has been reported to be 2.1 km.  

2. Initialisation errors coming from orbit determination of the ground station 
For a maximal duration of one day for orbit determination the following accura-

cies (3 σ values) in position are reported from a case study 2, page 301: 

• One ground station: 3.4 km (Buenos Aires), 4.1 km (Cordoba) 
• Two ground stations (Buenos Aires and Cordoba): 0.23 km 

As a conservative assumption, the worst value of 4.7 km including a margin is used. 

3. Modeling errors from the satellites own electrical propulsion (EP) thruster forces 
This will be quantified in this paper. 

The performance and requirement values are summarized in Table 1. 
Table 1: Achievable performance and requirements in orbit determination 

 Achievable performance(3 σ) 
[km] 

Source 

Propagated errors in the model 
itself and in the natural distur-
bances 

0.5 km In 1, page 41 

Propagated initialisation error 
from one-day lasting single 
ground station measurement  

 

4.7 km 

In 2, page 17 

Propagated errors from EP 
thruster force uncertainty 

Must be less than 6.4 km (RSS) 
to meet the requirement  

- 

Requirement on Overall Error < 8 km  

 

The rest of the paper investigates if the maximal position error of 6.4 km due to EP thruster 
uncertainty is achievable or not. 

MODEL EQUATIONS 

Justification of Linear Approach 

The problem addressed here is to evaluate what the difference Δr(t)= r1(t)- r0(t) where 

1) r0(t) is the satellite position when the SKM are performed with  nominal thruster performance 
2) r1(t) is the satellite position when the SKM are performed with  real thruster performance, i.e. 

additional unknown thruster disturbance forces are acting on the satellite during maneuvers. 
All other disturbances (Earth-, Sun-, moon gravity, …) remain almost the same, since r0(t) and 

r1(t) will differ after some days only in the range of some kilometers, which will be shown later. 
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Then, the effect of thruster uncertainty can be studied on an unperturbed orbit in which during the 
SKM only the thruster disturbances act.  

From 3, section 3, the effect of forces on changes of the satellite position can be mapped with a 
time varying matrix (see Eq. (9) ), and it shall be called “Soop model” according to the author 
E.M. Soop. Such a linear orbit model is also standard in orbit determination estimation proce-
dures which are used to estimate the orbit for several days 3 (section 8.5). 

Position Deviation caused by Thruster Forces 

The angular deviation of a GEO satellite from its nominal position with orbit radius Rgeo is de-
scribed in Figure 2 in the orbital frame, in which 

• Δλ is the deviation angle in longitudinal direction (i.e. longitudinal position change di-
vided by Rgeo) , 

• Δθ is the deviation angle in lateral direction (i.e. lateral position change divided by Rgeo) , 
• Δρ is the deviation angle in radial direction (i.e. radial position change divided by Rgeo). 

According to 3 (pages 18, 26, 49, 55, 60), the angular deviation can be linearized as a function 
of a single delta-v maneuver as 
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in which 
 
• v: speed of satellite in GEO orbit, i.e. 3074.7 m/s 
• s: orbit angle 
• sbij : burn angle of i’th thruster in the middle of the j’th maneuver 
• Δvij: delta-v vector components of i’th thruster during j’th maneuver 
• Δpij(s): angular position deviation vector depending on orbit angle 
• Aij(s): delta-v / position deviation matrix depending on orbit angle 
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The delta-v vector Δvij can be approximated by 
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m
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in which 

• Δtij: maneuver duration of i’th thruster during j’th maneuver 
• mSat: total satellite mass 
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Figure 2: Coordinate definition for the position deviation of a GEO satellite 

• Fi: thruster forces of thruster i in orbital frame, i.e. in longitudinal, lateral and radial di-
rection 

 
Then, the total deviation Δp(s) from the nominal position is given by the summation over n 

thrusters and their usage in particular maneuvers, i.e. 

 { {∑ =Δ=Δ
ji xnnx

ij FAspp
, 1)3()3(3

)( , (9)

in which F is the total thrust vector of dimension 3n comprising n thruster forces with three 
components each, and A is the total 3 x 3n transfer matrix. This model is called in the further con-
text “Soop”-model. 

DESCRIPTION METHODS OF UNCERTAINTIES IN THRUSTER FORCES 

Values from Electric Propulsion Specification 

The deviations of the true behavior of the EP thruster from its nominal one is mainly caused 
by a constant deviation in the thrust level and a constant deviation in the pointing error. This is 
visualized in Figure 3, in which  

• Fi nom: nominal thruster force wrt the local thruster frame xi, yi, zi.  
• Fi real: real thruster force wrt the local thruster frame xi, yi, zi. 
• ΔFi: thrust uncertainty vector 
• Δαi: thruster pointing accuracy of 0.5 deg is a typical value for EP manufacturers. 
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• ΔFiz: z-component of the thrust uncertainty vector, limited in both directions by the thrust 
level accuracy of 1% wrt the nominal thrust is a typical value for EP manufacturers. 

Note that in Figure 3 the shaded truncated cone represents the possible volume in which the 
“real”thrust force vector Fi real actually may lay. To simplify the analysis, for the further analysis 
in this paper not the truncated cone but the whole blue disc including the whole truncated cone is 
considered. 

For a single thruster (n=1) Eq.(9) can now be interpreted geometrically. To do this, matrix A 
in this equation can be rewritten 4 to be  

 FUSVFAp ==Δ , (10)

in which U and V are 3x3 rotation matrices and S is a diagonal matrix with positive entries. 
Now interpreting F as the blue disc of possible vectors from Figure 2, this disc will according to 
Eq. (9) be rotated (matrix V), then twisted in all axes (matrix S), and finally rotated again (matrix 
U).  

The result of this process is that the thruster uncertainty is mapped into the uncertainty in posi-
tion as a twisted green disc as shown in Figure 4. 

For any number n of thrusters Eq. (9) can now be interpreted geometrically as the summation 
of n differently twisted discs. 

The real thrust vector Fi real can then be written to be composed of the nominal part Fi nom (its 
magnitude described as Fi0 ) and the uncertain part ΔFi to be 

 inomireali FFF Δ+= , (11)

The thrust uncertainty vector ΔFi  is bounded component wise by the following equation: 
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in which 
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PROBABILISTIC DESCRIPTION OF THRUSTER UNCERTAINTY 

In this method the components of the uncertainty vector ΔFi  are expressed as Gaussian dis-
tributed random numbers, and the specified limitations in thrust level and pointing are expressed 
as 3 σ bounds. 

This leads for the standard deviation of the z-component to  
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Figure 3: Description of thruster uncertainty 

 

 

 
Figure 4: Mapping of thruster uncertainty bound into position uncertainty bound 

 

The uncertainty in the pointing is treated with a confidence of 99.7%. From that, the x and y 
component can be “translated” as independent Gaussian distributed numbers with the same stan-
dard variation (see 5 and Eq. 9 therein) 
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The bias value of all three components is assumed to be zero. 

To summarize, the thrust uncertainty vector ΔFi of thruster i can be written in the local thruster 
frame i as 
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in which N describes the Gaussian distribution. 

To translate the components from the local thruster frame i into the orbit frame o an invariant 
transformation needs to be applied, namely 

 )()( i
i

o
i

o
i FTF Δ=Δ , (17)

in which Ti
o is the transformation matrix from the local thruster frame i towards the orbit 

frame o. 

In order to study the effect of the random parts of the thruster forces ΔFi, Eqs. (16), (17) are 
plugged into Eqs. (6), (7), (8), (9).  

The result can be written in the form 

 { { {
1)3()3(313 xnnxx

xAy = , (18)

in which  

• x is the (3n)x1 random vector of thrust force uncertainties with the distribution described 
in Eq. (16). 

• A is – for a specific orbit angle – the constant 3x(3n) transfer matrix 
• and y is again a Gaussian distributed random vector of dimension 3x1 comprising the po-

sition error in longitudinal, lateral and radial direction, with distribution N(0, AσxAT), see 
*, in which σx is the covariance matrix: 

 

                                                      
* http://en.wikipedia.org/wiki/Multivariate_normal_distribution 
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and 

 T
xy AAσσ = , (20)

Computation tasks 

1. Determine each standard deviation of the longitudinal, lateral and radial angular devia-
tion from the nominal GEO position as shown in Figure 2. This can be directly com-
puted from Eq. (20) row-by-row: 
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(21)

2. Determine the 99.7 % confidence interval on the positional deviation, i.e. on yTy: 
 %7.99max =≤ yprobabilitforyyyT , (22)

The difficult part of the task is, that the quadratic form of the random vector y, i.e. 
yT*y, is no longer a normal distribution. This is obvious, since yT*y is always non-
negative. 

If the new covariance matrix on y, AσAT, were of diagonal form with equal elements, 
then a Chi-Square distribution could be used, see *; however, this is in general not the 
case. Then, the only possibility is to compute the joint probability density function of the 
three-dimensional vector y in an analogue way to the two-dimensional case which is dis-
cussed in detail in 5. Alternatively, the general case for n-dimensional vectors is discussed 
in 6. By either of the mentioned methods the bound ymax can be computed. 

PARAMETRIC DESCRIPTION OF THRUSTER UNCERTAINTY 

In order to study the effect of parametric variation of the thruster forces ΔFi, Eq. (9) is used: 

                                                      
* http://en.wikipedia.org/wiki/Chi-square_distribution 
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in which ΔF comprises the uncertainty vectors using Eq. (12) 
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where in Eq.(12) the maximal possible value for Δα, |Δα|max, has been used, because only with 
this maximal value the impact on the orbit distortion can be maximised. 

Computation tasks 

1. Determine each possible maximal variation of the longitudinal, lateral and radial angular 
deviation independently from each other, from the nominal GEO position, by determin-
ing the worst case thruster errors which cause it. 

 

The maximal possible values for Δλ, Δθ, Δρ in Eqs. (23), (24) can be written as 
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Note that here the property 
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has been used. 

2. Determine the maximal possible positional deviation by determining the worst case 
thruster errors which cause it. 

What we are interested in is to determine the maximal value of on ΔpT*Δp over all 
possible values of ΔF, i.e. 
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Eq. (27) is solved by numerical optimization *. 

• Since the longitudinal error is dominant here, a realistic lower bound on this solu-
tion of Eq. (27) can be found using the first equation of Eq. (25): 

 maxmax λΔ≤Δp , (28)

• An upper bound on this solution of Eq. (27)  can be found by squaring, adding 
and rooting elements of Eq. (25): 

 
2

max
2

max
2

maxmax ρθλ Δ+Δ+Δ≤Δp , (29)

ACCURACY OF SOOP-MODEL COMPARED TO HILL-EQUATION-MODEL 

The Hill equations (see for instance 7 and section 3.6.1 therein) can be used to derive a linear 
state space model for small orbit perturbations. In fact, such a model has been used as onboard 
orbit propagator on Telecom satellites and even been verified with range measurements from a 
ground station, as shown in 1, chapter 3. Therefore, such a linear state space model is good bench-
mark for the simplified Soop model used in this paper.  

The result for a worst case perturbation using 4 different thrusters with 1% thrust level uncer-
tainty when fired for 6 days is shown in Figure 5 (left). After 7 days the modeling error is below 
40 m. For a typical perturbation with randomly selected parasitic thruster forces, the result is 
shown in Figure 5 (right): The accumulated error after 7 days is 160 m. 

Because of the very small modeling error, the simple Soop-model is very well suited here. 
 

 

 

 

 

 

 

 

 

 
Figure 5 Comparison of Soop model and Hill-model for worst case (left) typical perturbation (right). 

                                                      
* Function fmincon of optimization toolbox, www.mathworks.com 
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COMPUTATIONAL RESULTS ON ORBIT DISTORTION 

Evaluation Models to assess the Orbit Distortion 

In order to evaluate the effect of the unknown thruster performance (pointing angle and thrust 
level), two models are considered: 

• The “prediction-model”, corresponding to the orbit propagator for a satellite: This corre-
sponds to Eq. (9), in which the thrust force F corresponds to all nominal “perfect” thrust 
vectors including all measurable deviations from nominal performance 

• The “reality-model”: This corresponds to Eq. (9), in which the thrust force F corresponds 
to all nominal “perfect” thrust vectors including all measurable deviations from nominal 
performance plus small and unknown disturbances as described in Figure 3. 

In the next section the “difference-model” between those two models is analysed, i.e. only the 
effect of the unknown disturbances on the orbit are considered. To do that, in Eq. (9), the thrust 
force F corresponds only to the small and unknown disturbances as described in Figure 3. 

STATION KEEPING WITH ELECTRICAL PROPULSION 

The following maneuver scenario and parameters for the computations in this section has been 
assumed: 

1. Equally distributed six days of firing on two nodes to cancel out a weekly delta v distur-
bance of 1 m/s; only North/South station keeping has been considered. 

2. All thrusters are fired one at a time. The necessary total thruster burn times have been 
computed according to 3 (page 49-50 therein). 

3. The maximal satellite mass is 1850 kg which has been used for all computations. 
4. On the seventh day no maneuver takes place in order to allow for undisturbed orbit de-

termination. 
5. Two different scenarios are computed:  

a. Firing with 4 thrusters and 1% thrust level uncertainty, 
b. Firing with 4 thrusters and 2% thrust level uncertainty, 

A possible EP thruster configuration is shown in Figure 6 (with 46 deg canting angle). 

 
Figure 6: EP Thruster Configuration 
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SELECTED TIME DOMAIN SIMULATIONS 

The effect of the thruster uncertainty is demonstrated in two ways by a seven day simulation 
with two different thruster disturbances - typical and worst case - ,in which a nominal thrust level 
of 80 mN has been used. As an example, each one of 4 thrusters are fired for 1386 s each day in a 
6 day period in order to achieve the weekly Δv=1 m/s. 

“Typical” Case 

A “typical” set of randomly chosen thruster uncertainties is selected as shown in  

Table 2.  
Table 2: “Typical” set of force disturbances of each thruster [mN] in local thruster frame  

 Thr 1 Thr 4 Thr 5 Thr 8 

x 0.0366 0.0356  -0.3470   -0.0337  

y 0.0697   -0.2972   -0.6973    +0.6973    

z 0.2000    -0.3000   -0.1000    0.8000    

When the input from  

Table 2 is plugged into the difference model described before, the result is shown in Figure 7: 
After 7 days, the thruster disturbances accumulate a position error of less than 1.7 km.  

Worst Case 

The “worst case” set of thruster uncertainty is obtained from Eq. (27) and shown in  Table 3.  
Table 3: Worst case set of force disturbances of each thruster [mN] in local thruster frame  

 Thr 1 Thr 4 Thr 5 Thr 8 

x 0.0254  -0.0279    -0.0289     0.0260    

y  0.7047    -0.7046     0.7045    -0.7046     

z -0.8000     0.8000     0.8000    -0.8000     

When the input from Table 3 is plugged into the difference model described before, the result 
is shown in Figure 7: After 7 days, the thruster disturbances accumulate a position error of 20 km. 
This value is much higher than the 1.7 km of the previous section, indicating already that the dis-
turbances must be really quite special to accumulate to this severe orbit distortion. 
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Figure 7: EP SKM Simulation of “TYPICAL” (left) and “WORST CASE” (right) Thruster Disturbances 

WORST CASE ANALYSIS OVER CONTINOUS EP-THRUST RANGE 

In Figure 7 the numerical result for 80 mN only has been presented. This section makes the 
analysis over the complete EP thrust level range from 10 mN up to 80mN. The result is shown in 
Figure 8 (left). 

For the top subplot, those EP force uncertainties have been computed, which produce the 
maximal longitudinal error, the maximal latitude error and the maximal radial error and those an-
gles have then been plotted. As expected, the longitudinal error is dominant. 

For the bottom subplot, those EP force uncertainties have been computed, which produce the 
maximal position error which is then plotted. 

The result is, that the worst case position error decreases monotonously from 22 (35) km to 20 
(30) km with increasing thrust level for 1% (2%) thrust uncertainty.  

PROBABILITY ANALYSIS OVER CONTINOUS EP-THRUST RANGE 

The worst case analysis results shown above needs to be complemented by an analysis which 
shows, how likely it is that a certain orbit distortion occurs. In this section, the results are shown 
for how severe the final satellite position after seven days can be distorted, when a probability of 
50% or 99.7% is assumed. 

The results are shown in Figure 8 (right). For a probability of 99.7%, the positional deviation 
is below 7.5/12.8 km at 10 mN thrust, and decreases to 6.7/11.5 km up to 80 mN thrust for 4 
thrusters and 1% thrust uncertainty /4 thrusters and 2% thrust uncertainty.  

This means, for the current baseline of using 4 thrusters and assuming a 1% uncertainty on the 
thrust level maps into a 6.7 km uncertainty which just violates the maximally tolerable error of 
6.4 km as outlined in Table 1. 

 

 

 

 

 

 

 

 

 
Figure 8: Probability Analysis (left) and Worst Case Analysis (right) of Orbit Distortion Depend-

ing on EP-Thrust Level 

ANALYSIS OF EP-THRUST UNCERTAINTY 

From Figure 8 it can be seen that above a thrust level of 30 mN there is no difference in the 
impact on the orbit position. The dependency of the error in position after 7 days has been plotted 
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sults can be seen in Figure 9. An error in the pointing larger than 0.8 deg (3-Sigma) cannot be 
tolerated, because even with no error in the thrust level an error larger than the 6.4 km will be 
introduced. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: Worst Case Position (left) and 99.7 % Probability Position (right) from Thrust Level 

and Thruster Pointing Uncertainty 

RESULTS FROM COVARIANCE ANALYSIS 

Another way to approach the assessment of orbit uncertainty that arises from autonomous sta-
tion-keeping over a certain period of time, is Covariance Analysis. In matrix format the analysis 
provides the variances and co-variances related to the error in position and velocity. 

At the beginning of the station-keeping cycle, directly after orbit determination has been com-
pleted, the covariance matrix solely reflects the uncertainties related to orbit determination errors. 
Subsequently this matrix is referred to as Psv(t0). The error depicted by this matrix, depend on the 
number of ground stations used, the period over which ranging is performed and the quality of the 
applied method. 

Some typical values for Psv(t0), when using two ground stations and performing ranging over a 
period of 24 hours, are listed in Table 4. 

Table 4: Covariance matrix of orbit errors at beginning of the station-keeping cycle. 

 R T N Vr Vt Vn 

R 215.57 m2 11550.4 m2 153.97 m2 -0.00287 m2s-1 -0.0246 m2s-1 -0.0213 m2s-1 

T 11550.41 m2 740243 m2 2103.86 m2 -0.171 m2s-1 -1.29 m2s-1 -1.27 m2s-1 

N 153.97 m2 2103.86 m2 821.67 m2 5.48E-5 m2s-1 -0.021 m2s-1 0.00191 m2s-1 

Vr -0.00287 m2s-1 -0.171 m2s-1 5.48E-5 m2s-1 1.09E-7 m2s-2 3.17E-07 m2s-2 8.01E-7 m2s-2 

Vt -0.0246 m2s-1 -1.29 m2s-1 -0.021 m2s-1 3.17E-7 m2s-2 2.83E-06 m2s-2 2.34E-6 m2s-2 

Vn -0.0213 m2s-1 -1.27 m2s-1 0.00191 m2s-1 8.01E-7 m2s-2 2.34E-06 m2s-2 5.92E-6 m2s-2 
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In order to compute the uncertainties in the state vector at the end of the station-keeping cycle, 
after 6 days of station-keeping and one day of free-drift, during which the ranging is performed, 
the covariance matrix needs to be propagated over the entire period. 

An estimate of the propagated covariance matrix can be computed by means of the transition 
matrix. In mathematical terms it is: 

 T
inputfsv TPTtP ⋅⋅=)( , (30)

In order to take full account of additional uncertainties in the spacecraft state, which are intro-
duced by the earlier reported inaccuracies in the thruster performance, the covariance matrix Pinput 
is composed of the orbit determination covariance components from Psv(t0) and covariances due 
to thruster uncertainties. The considered factors of thruster performance uncertainties are: 

• Error in thrust magnitude, 

• Error in thrust start time, 

• Error in thrust elevation angle, 

• Error in thrust azimuth angle. 

It is assumed that the thrust magnitude has a 3-σ uncertainty of 1.0%. Assuming a nominal 
thruster output of 80 mN, this translates into a 1-σ uncertainty of 0.533 mN and a variance of σ 2 
= 7.11E-08 N2, respectively. 

For azimuth and elevation angle uncertainties a 3-σ value of 0.5 deg is assumed, which com-
prises spacecraft attitude as well as thrust direction errors. 

This leads to  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

mano

sv
input P

tP
P

0
0)( 0 . (31)

The matrix Pmano describes the covariance’s related to maneuver errors. In order to assess the 
worst case scenario, it is assumed that all maneuver error sources are uncoupled and that they are 
independent for the various thrusters. This means, the off-diagonal elements of Pmano are all zero. 
Additionally, the errors need to be treated separately for all error sources and all thrusters. Given 
the fact that four error sources are considered for a total of 4 thrusters, Pmano becomes a 16 x 16 
matrix. 

Further, the transition matrix needs to be computed in order to estimate the state covariance 
matrix at the end of the station-keeping cycle. The transition matrix is composed of all the partial 
derivatives that relate the potential error sources (uncertainty in position/velocity and maneuver 
errors) to the spacecraft state vector. Hence, the transition matrix is a Jacobian.  

The entries of the transition matrix are determined by simulating the entire station-keeping cy-
cle. One at a time, the simulations are performed with finite variations to excite a particular error 
pattern per simulation. 

Then, the partial derivatives of the transition matrix are computed from the finite differences 
of the final state vector to the unperturbed baseline. This task is performed in the radial orbit 
frame, such that the following transition matrix elements for Tmano are obtained: 
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Table 5: Partial derivatives for south-west thruster maneuver errors. 

SouthWest •R(tf)  
[m] 

•T(tf)      
[m] 

•N(tf)   
[m] 

•Vr(tf) 
[m/s] 

•Vt(tf) 
[m/s] 

•Vn(tf) 
[m/s] 

∂/∂ thrust level [N] -1.47E+5 3.07E+6  -1.98E+3 -2.24E+2 8.01 2.58 

∂/∂ start time [s] 2.14E-2 -1.39 -1.94E-1 7.23E-5 -1.56E-6 -7.09E-7 

∂/∂ elevation [°] -8.03E-1 1.55E+2 -1.13E-2 -7.76E-3 9.07E-5 -3.02E-7 

∂/∂ azimuth [°] -1.85E+2 3.87E+3 2.15 -2.82E-1 1.01E-2 -3.51E-3 

 

Table 6: Partial derivatives for south-east thruster maneuver errors. 

SouthEast •R(tf)   
[m] 

•T(tf)      
[m] 

•N(tf)   
[m] 

•Vr(tf) 
[m/s] 

•Vt(tf) 
[m/s] 

•Vn(tf) 
[m/s] 

∂/∂ thrust level [N] 1.94E+5 -4.07E+6 -1.25E+4 2.99E+2 -1.06E+1 3.36 

∂/∂ start time [s] -1.47E-1 1.81 -2.52E-1 -9.37E-5 1.07E-5 -5.11E-6 

∂/∂ elevation [°] 1.54E+1 -2.04E+2 1.56E-2 1.03E-2 -1.16E-3 3.96E-7 

∂/∂ azimuth [°] -2.46E+2 5.14E+3 -1.76E+1 -3.77E-1 1.33E-2 4.53E-3 

 
Table 7: Partial derivatives for north-west thruster maneuver errors. 

NorthWest •R(tf)  
[m] 

•T(tf)      
[m] 

•N(tf)   
[m] 

•Vr(tf) 
[m/s] 

•Vt(tf) 
[m/s] 

•Vn(tf) 
[m/s] 

∂/∂ thrust level [N] -1.31E+2 2.77E+6 -1.94E+3 -2.02E+2 -2.68 2.58 

∂/∂ start time [s] -2.14E-2 1.87E-1 -1.94E-1 1.56E-5 1.56E-6 -7.13E-7 

∂/∂ elevation [°] 2.56 -2.94E+1 -1.36E-2 -1.36E-3 -1.57E-4 -5.23E-8 

∂/∂ azimuth [°] 3.02E-2 -3.51E+3 -2.22 2.55E-1 3.38E-3 3.50E-3 

 
Table 8: Partial derivatives for north-east thruster maneuver errors. 

NorthEast •R(tf)   
[m] 

•T(tf)      
[m] 

•N(tf)   
[m] 

•Vr(tf) 
[m/s] 

•Vt(tf) 
[m/s] 

•Vn(tf) 
[m/s] 

∂/∂ thrust level [N] 3.49E+3 -3.76E+6 -1.26E+4 2.72E+2 3.32 3.36 

∂/∂ start time [s] 1.46E-1 -1.83E-1 -2.52E-1 -2.46E-5 -1.07E-5 -5.11E-6 

∂/∂ elevation [°] -1.76E+1 3.11E+1 1.78E-2 2.30E-3 1.24E-3 8.80E-8 

∂/∂ azimuth [°] 4.55 -4.75E+3 1.77E+1 3.44E-1 4.21E-3 -4.55E-3 

 

With this information the state covariance matrix can be propagated to the end of the station-
keeping cycle, providing Psv(tf). The 1-σ uncertainties in the final state vector can be extracted as 
the RMS values of the main diagonal elements of the covariance matrix.  
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The results from the covariance analysis provide a value of 8.5 km for the 3-σ uncertainty in 
tangential direction after the entire 7-day station-keeping cycle. This computation includes the 
entire range of possible error sources, from initial orbit determination to thrust direction, thrusting 
times, and the overall 3-σ thrust level error of 1.0%.  

Table 9: 1-σ uncertainties for the final state vector, assuming independent maneuver er-
rors on the four thrusters. 

1-σ uncer-
tainty R(tf) [m] T(tf) [m] N(tf) [m] Vr(tf) [m/s] Vt(tf) [m/s] Vn(tf) [m/s] 

1% uncer-
tainty in thrust 
level 

0.1435E+3 2.8268E+3 2.98E+1 1.825E-1 1.025E-2 3.195E-3 

 

The covariance analysis is based on partial derivatives that are obtained through simulation. 
Hence, the analysis has a completely different character from the analysis that was described and 
conducted earlier in this paper. The covariance analysis result of 8.5 km is almost identical to the 
earlier obtained result of 8.3 km.  

The results strongly suggest that the results concerning the station-keeping uncertainties have 
been verified by the covariance analysis and that all drawn conclusions are fully valid. 

CONCLUSION 

The following conclusions can be drawn: 

1. The orbit determination accuracy requirement of 8 km is just met with a slight vio-
lation with the current 4 EP thruster configuration assuming 1% thrust level uncer-
tainty. 

The Propagated error from EP thruster force uncertainty is within a 99.7 % confidence 
interval 6.7 km after 6 days of firing and 1 free drifting day and thus slightly exceeds the 
required value of 6.4 km, see Table 1, which results in a total error of 8.3 km which is 
slightly larger than the required 8 km.  

2. The determination error is very sensitive to changes in the thrust uncertainty: Al-
ready 2% thrust uncertainty will result in a position error of 11.5 km. 

3. The main contributor on orbit determination error is the EP thruster uncertainty, 
the smallest contributor is the orbit dynamics modeling including natural distur-
bances. The value for the total orbit determination error has been derived using very con-
servative assumptions on the modeling errors on natural disturbances as well as on 
ground orbit determination error, since the value on modeling errors on natural distur-
bances are already partially included in ground orbit determination errors. Therefore, any 
further improvements on the accuracy of the dynamics of the orbit propagator are not 
producing relevant benefit for the overall error. To conclude, a standard orbit propagator 
as used in Chemical propulsion based satellites to compute the attitude reference profile 
is adequate also for EP SKM. 

4. The results from the covariance analysis confirm the results achieved in Figure 9 
and, thus, also the findings concerning impact of uncertainties on the accuracy of 
the station-keeping cycle propagation. For the 4 EP configuration with a thrust level 
uncertainty of 1.0% (3-σ) the covariance analysis provides a 3- σ uncertainty in the tan-
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gential position at the end of the station-keeping cycle of 8.5 km versus the pre-defined 
requirement of 8.0 km. 

 

REFERENCES 
1 O. Juckenhöfel Einsatz, „Richtungsmessender Sensoren in der Autonomen Bahnregelung Geosynchroner Satelliten“, 
PhD-Thesis, University of Stuttgart, 2001. 
2 O. Montenbruck and E. Gill,, „Satellite Orbits“, Springer-Verlag, Berlin, 2000 
3 E.M. Soop,  Handbook of Geostationary Orbits, Kluwer, 1994 
4 G. Strang, “Linear Algebra and Its Applications”, Harcourt Brace & Company, 1988. 
5 P. Zentgraf, “Computation of "Three-Sigma Cone Angle" from given Variances in Roll and Pitch”, TEC-ECC/25.07, 
2007. 
6 S. Kotz, N. L. Johnson and D. W. Boyd, “Series Representations of Distributions of Quadratic Forms in Normal Vari-
ables. I. Central Case”, Ann. Math. Statist. Volume 38, Number 3 (1967), 823-837. 
7 M. Kaplan, “Modern Spacecraft Dynamics and Control”, John Wiley & Sons, 1976. 


